0708-1300/Class notes for Tuesday, September 25

From Drorbn
Jump to navigationJump to search
Announcements go here

Dror's Notes

  • Class photo is on Thursday, show up and be at your best! More seriously -
    • The class photo is of course not mandatory, and if you are afraid of google learning about you, you should not be in it.
    • If you want to be in the photo but can't make it on Thursday, I'll take a picture of you some other time and add it as an inset to the main picture.
  • I just got the following email message, which some of you may find interesting:
NSERC - CMS Math in Moscow Scholarships

The Natural Sciences and Engineering Research Council (NSERC) and the
Canadian Mathematical Society (CMS) support scholarships at $9,000
each. Canadian students registered in a mathematics or computer
science program are eligible.

The scholarships are to attend a semester at the small elite Moscow
Independent University.

Math in Moscow program
www.mccme.ru/mathinmoscow/
Application details
www.cms.math.ca/bulletins/Moscow_web/

For additional information please see your department or call the CMS
at 613-562-5702.

Deadline September 30, 2007 to attend the Winter 2008 semester.

Class Notes

The notes below are by the students and for the students. Hopefully they are useful, but they come with no guarantee of any kind.

First hour

Recall from last class we were proving the equivalence of the two definitions for a smooth manifold. The only nontrivial point that remained to be proved was that if we started with the definition of a manifold in the sense of functional structures and produced charts Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi,\psi} that these charts would satisfy the property of a manifold, defined in the atlas sense, that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\circ\varphi^{-1}} is smooth where defined.

Proof

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\circ\varphi^{-1}:\mathbb{R}^n\rightarrow \mathbb{R}^n} is smooth Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Leftrightarrow} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\psi\circ\varphi^{-1})_i:\mathbb{R}^n\rightarrow \mathbb{R}} is smooth i is smooth where is the coordinate projection map.

Now, since Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i} is always smooth, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_i\in F_{\mathbb{R}^{n}}(U^{'}_{\psi})}

But then we have Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{i}\circ\psi\in F_{M}(U_{\psi})} and so, by a property of functional structures, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{i}\circ\psi |_{U_{\varphi}\bigcap U_{\psi}}\in F_{M}(U_{\varphi}\bigcap U_{\psi})} and hence Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi_{i}\circ\psi\circ\varphi^{-1}\in F_{\mathbb{R}^{n}}} where it is defined and thus is smooth. QED


Definition 1 (induced structure) Suppose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi:X\rightarrow Y} and suppose Y is equipped with a functional structure Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_Y} then the "induced functional structure" on X is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{X}(U) = \{f:U\rightarrow \mathbb{R}\ |\ \exists g\in F_{Y}(V)\ such\ that\ V\supset \pi(U)\ and\ f=g\circ\pi\}}

Claim: this does in fact define a functional structure on X


Definition 2 This is the reverse definition of that given directly above. Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi:X\rightarrow Y} and let X be equipped with a functional structure . Then we get a functional structure on Y by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F_{Y}(V) = \{g:V\rightarrow \mathbb{R}\ |\ g\circ\pi\in F_{X}(\pi^{-1}(V)\} } Claim: this does in fact define a functional structure on X


Example 1 Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^{2} = \mathbb{R}^{3}-\{0\}/} ~ where the equivalence relation ~ is given by x~Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} x for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha} >0 We thus get a canonical projection map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \pi:\mathbb{R}^{3}-\{0\}\rightarrow S^{2}} and hence, there is an induced functional structure on Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^{2}} . Claim: 1) This induced functional structure makes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S^{2}} into a manifold 2) This resulting manifold is the same manifold as from the atlas definition given previously


Example 2 Consider the torus thought of as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^{2} = \mathbb{R}^{2}/\mathbb{Z}^{2}} , i.e., the real plane with the equivalence relation that (x,y)~(x+n,y+m) for (x,y) in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^{2}} and (n,m) in

As in the previous example, the torus inherits a functional structure from the real plane we must again check that 1) We get a manifold 2) This is the same manifold as we had previously with the atlas definition


Example 3 Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CP^{n}} denote the n dimensional complex projective space, that is, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CP^{n} = \mathbb{C}^{n+1}-\{0\}/} ~ where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [z_{0},...,z_{n}]} ~ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\alpha z_{0},...,\alpha z_{n}]} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha\in \mathbb{C}}

Again, this space inherits a functional structure from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{C}^{n+1}} and we again need to claim that this yields a manifold.

Proof of Claim

We consider the subsets Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CP^{n}\supset U_{i} = \{[z_{0},...,z_{n}]\ |\ z_{i}\neq 0\}} for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq i \leq n}

Clearly

Now, for each Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\in U_{i}} there is a unique representative for its equivalence class of the form Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [z_{0},...,1,...,z_{n}]} where the 1 is at the ith location.

We thus can get a map from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi_{i}:U_{i}\rightarrow \mathbb{C}^{n} = \mathbb{R}^{2n}} by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p\mapsto [z_{0}/z_{i},...,z_{i-1}/z_{i},z_{i+1}/z_{i},...,z_{n}/z_{i}]} Hence we have shown (loosely) that our functional structure is locally isormorphic to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\mathbb{R},C^\infty)}


Definition 3 Product Manifolds

Suppose Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M^{m}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N^{n}} are manifolds. Then the product manifold, on the set MxN has an atlas given by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{\varphi \times \psi: U\times V\rightarrow U'\times V'\in \mathbb{R}^{m}\times \mathbb{R}^{n}\ | \varphi: U\rightarrow U'\subset \mathbb{R}^{m}\ and\ \psi:V\rightarrow V'\subset \mathbb{R}^{n}} are charts in resp. manifolds}

Claim: This does in fact yield a manifold


Example 4 It can be checked that gives the torus a manifold structure, by the product manifold, that is indeed the same as the normal structure given previously.

Second Hour

Aim: We consider two manifolds, M and N, and a function f between them. We aim for the analogous idea of the tangent in the reals, namely that every smooth Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:M \rightarrow N} has a good linear approximation. Of course, we will need to define what is meant by such a smooth function, as well as what this linear approximation is.


Definition 1 Smooth Function, Atlas Sense

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M^{m}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N^{n}} be manifolds. We say that a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:M^{m}\rightarrow N^{n}} is smooth if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi\circ f\circ\varphi^{-1}} is smooth, where it makes sense, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall} charts Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi,\varphi}


Definition 2 Smooth Function, Functional Structure Sense

Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M^{m}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N^{n}} be manifolds. We say that a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:M^{m}\rightarrow N^{n}} is smooth if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall h:V\rightarrow \mathbb{R}} such that h is smooth, is smooth on subsets of M where it is defined.


Claim 1

The two definitions are equivalent


Definition 3 Category (Loose Definition)

A category is a collection of "objects" (such as sets, topological spaces, manifolds, etc.) such that for any two objects, x and y, there exists a set of "morphisms" denoted mor(Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\rightarrow y} ) (these would be functions for sets, continuous functions for topological spaces, smooth functions for manifolds, etc.) along with

1)Composition maps :mor(Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\rightarrow y} ) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \times} mor(Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y\rightarrow z} ) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rightarrow} mor (Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\rightarrow z} )

2) For any x there exists an element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1_{x}\in} mor(Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x \rightarrow x} )

such that several axioms are satisfied, including

a) Associativity of the composition map

b) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1_{x}} behaves like an identity should.


Claim 2

The collection of smooth manifolds with smooth functions form a category. This (loosely) amounts to (easily) checking the two claims that

1) if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:M\rightarrow N} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g:N\rightarrow L} are smooth maps between manifolds then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\circ f:M\rightarrow L} is smooth

2) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1_{M}} is smooth


We now provide two alternate definition of the tangent vector, one from each definition of a manifold.

Definition 4 Tangent Vector, Atlas Sense

Consider the set of curves on the manifold, that is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{\gamma:\mathbb{R}\rightarrow M\ |\ s.t.\ \gamma\ smooth,\ \gamma(0) = p\}}

We define an equivalence relation between paths by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{1}} ~ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{2}} if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi\circ\gamma_{1}} is tangent to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \varphi\circ\gamma_{2}} as paths in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}^{n}\ \forall\varphi} .

Then, a tangent vector is an equivalence class of curves.


Definition 5 Tangent Vector, Functional Structure Sense

A tangent vector D at p, often called a directional derivative in this sense, is an operator that takes the smooth real valued functions near p into Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} .

such that,

1) D(af +bg) = aDf + bDg for a,b constants in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} and f,g such functions

2) D(fg) = (Df)g(p) + f(p)D(g) Leibniz' Rules


Theorem 1 These two definitions are equivalent.


Definition 6 Tangent Space

The tangent space at a point, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{p}M } = the set of all tangent vectors at a point p


Claim 3

We will show later that in fact Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_{p}M } is a vector space


Consider a map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:M\rightarrow N} . We are interested in defining an associated map between the tangent spaces, namely, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle df_{p}:T_{p}M\rightarrow T_{f(p)}N}

We get two different definitions from the two different definitions of a tangent vector

Definition 7 (atlas sense)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (df_{p})([\gamma]):=[f\circ\gamma]}

Definition 8 (functional structure sense)

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ((df_{p})(D))(h):=D(h\circ f)}


Proof of Theorem 1

We consider a curve Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma} and denote its equivalence class of curves by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\gamma]}

We consider the map Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi:[\gamma]\rightarrow D_{\gamma}} defined by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{\gamma}(f) = (f\circ\gamma)'(0)}

It is clear that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{\gamma}} is linear and satisfies the leibnitz rule.

Claim: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} is a bijection.

We will need to use the following lemma, which will not be proved now:

Hadamard's Lemma

If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\mathbb{R}^{m}\rightarrow \mathbb{R}} is smooth near 0 then there exists smooth Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_{i}:\mathbb{R}^{m}\rightarrow \mathbb{R}} such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = f(0) + \Sigma_{i=1}^{n}x_{i}g_{i}(x)}


Now, let D be a tangent vector. One can quickly see that D(const) = 0.

So, by Hadamard's lemma, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Df = D(f(0) + \Sigma_{i=1}^{n}x_{i}g_{i}(x)) = D(\Sigma_{i=1}^{n}x_{i}g_{i}(x)) = \Sigma_{i=1}^{n}(Dx_{i})g_{i}(0) + \Sigma_{i=1}^{n}x_{i}(0)Dg_{i}} = Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Sigma_{i=1}^{n}(Dx_{i})g_{i}(0)} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_{i}(0) = 0}

and hence, Df is a linear comb of fixed quantities.

Now, let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma:\mathbb{R}\rightarrow \mathbb{R}^{n}} be such that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma(0) = 0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{\gamma}f = \Sigma_{i=1}^{n}(D_{\gamma}x_{i})g_{i}(0)}

but Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D_{\gamma}(x_{i}) = (x_{i}\circ\gamma)'(0) = \gamma_{i}'(0)}

We can now claim that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} is onto because given a D take Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \gamma_{i}(t)=D(x_{i})t}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Phi} is trivially 1:1.

Smoot

In this class It was riced the question of what a "Smoot" is. Here it is 0708-1300/Smoot