 Add your name / see who's in!
|
#
|
Week of...
|
Links
|
Fall Semester
|
1
|
Sep 10
|
About, Tue, Thu
|
2
|
Sep 17
|
Tue, HW1, Thu
|
3
|
Sep 24
|
Tue, Photo, Thu
|
4
|
Oct 1
|
Questionnaire, Tue, HW2, Thu
|
5
|
Oct 8
|
Thanksgiving, Tue, Thu
|
6
|
Oct 15
|
Tue, HW3, Thu
|
7
|
Oct 22
|
Tue, Thu
|
8
|
Oct 29
|
Tue, HW4, Thu, Hilbert sphere
|
9
|
Nov 5
|
Tue,Thu, TE1
|
10
|
Nov 12
|
Tue, Thu
|
11
|
Nov 19
|
Tue, Thu, HW5
|
12
|
Nov 26
|
Tue, Thu
|
13
|
Dec 3
|
Tue, Thu, HW6
|
Spring Semester
|
14
|
Jan 7
|
Tue, Thu, HW7
|
15
|
Jan 14
|
Tue, Thu
|
16
|
Jan 21
|
Tue, Thu, HW8
|
17
|
Jan 28
|
Tue, Thu
|
18
|
Feb 4
|
Tue
|
19
|
Feb 11
|
TE2, Tue, HW9, Thu, Feb 17: last chance to drop class
|
R
|
Feb 18
|
Reading week
|
20
|
Feb 25
|
Tue, Thu, HW10
|
21
|
Mar 3
|
Tue, Thu
|
22
|
Mar 10
|
Tue, Thu, HW11
|
23
|
Mar 17
|
Tue, Thu
|
24
|
Mar 24
|
Tue, HW12, Thu
|
25
|
Mar 31
|
Referendum,Tue, Thu
|
26
|
Apr 7
|
Tue, Thu
|
R
|
Apr 14
|
Office hours
|
R
|
Apr 21
|
Office hours
|
F
|
Apr 28
|
Office hours, Final (Fri, May 2)
|
Register of Good Deeds
|
Errata to Bredon's Book
|
|
Announcements go here
Class Notes
The notes below are by the students and for the students. Hopefully they are useful, but they come with no guarantee of any kind.
Scanned Notes
Scanned notes for today's class can be found here
(see discussion)
Typed Notes - First Hour
Reminder:
1) An immersion locally looks like
given by
2) A submersion locally looks like
given by
Today's Goals
1) More about "locally things look like their differential"
2) The tricky Sard's Theorem: "Evil points are rare, good points everywhere"
Definition 1
Let
be smooth. A point
is critical if
is not onto
rank
. Otherwise, p is regular.
Definition 2
A point
is a critical value of f if
such that p is critical and
. Otherwise, y is a regular value
Example 1
Consider the map
given by
. I.e., the projection map. The regular points are all the points on
except the equator. The regular values, however, are all
such that
Example 2
Consider
given by
.
That is,
. Clearly
and so p is regular
So, the critical values are the image of zero, thus only zero. All other
are regular values.
Note: In both the last two examples there were points in the target space that were NOT hit by the function and thus are vacuously regular. In the previous example these are the point x<0.
Example 3
Consider a function
from a segment in
onto a curve in
such that
is never zero. Thus, rank(
and so
is never onto. Hence, ALL points are critical in the segment. The points on the curve are critical values, as they are images of critical points, and all points in
NOT on the curve are vacuously regular.
Theorem 1
Sard's Theorem
Almost every
is regular
the set of critical values of f is of measure zero.
Note: The measure is not specified (indeed, for a topological space there is no canonical measure defined). However the statement will be true for any measure.
Theorem 2
If
is smooth and y is a regular value then
is an embedded submanifold of
of dimension m-n.
Re: Example 2
is a sphere and hence (again!) the sphere is a manifold
Re: Example 3
for regular y is empty and hence we get the trivial result that the empty set is a manifold
Proof of Theorem 2
Let
is smooth and y is a regular value. Pick a
. p is a regular point and thus
is onto. Hence, by the submersion property (Reminder 2) we can find a "good charts" thats maps a neighborhood U of p by projection to a neighborhood V about y. Indeed, on U f looks like
by
.
So
. Q.E.D
Diversion
Arbitrary objects can be described in two ways:
1) With a constructive definition
2) with an implicit definition
For example, a constructive definition of lines in
is given by
but implicitly they are the solutions to the equations
and
.
Hence in general, a constructive definition can be given in terms of an image and an implicit definition can be given in terms of a kernal.
Homological algebra is concerned with the difference between these philosophical approaches.
Remark
For submanifolds of smooth manifolds, there is no difference between the methods of definition.
Definition 3
Loosely we have the idea that a concave and convex curve which just touch at a tangent point is a "bad" intersection as it is unstable under small perturbation where as the intersection point in an X (thought of as being in
) is a "good" intersection as it IS stable under small perturbations.
Precisely,
Let
be smooth submanifolds. Let
We say
is transverse to
in M at p if
and
satisfy
Example 4
Our concave intersecting with convex curve example intersecting tangentially has both of their tangent spaces at the intersection point being the same line and thus does not intersect transversally as the sum of the tangent spaces is not all of
.
Our X example does however work.
Typed Notes - Second Hour
Assistance needed: There is a symbol for "intersects transversally" but I am not sure of the latex command. See the scanned notes for what this looks like, I will just write it.
RE: Assistance needed: Try the command \pitchfork. I don't think you need any special packages, and it's pretty close to the "intersects transversally" symbol.
Definition 4
intersects
transversally if
is transversal to
at every point
Theorem 3
If
transversally then
1)
is a manifold of dimension
2) Locally can find charts so that
and
with
Recall a Thm from Linear Algebra
If
and
subspaces of V then
In particular if
then
Proof Scheme for Theorem 3
We can write
for some such
We then write
Hence,
We want
. To prove this, we consider the aforementioned theorem from linear algebra with respect to the vector spaces obeying
hence, and by rank nullity,
as we wanted.
This shows that 0 is a regular value and hence by our previous theorem
is a submanifold.
Now, we know we can construct the following diagram,
where
We then set
(the function that takes the first
coordinates only)
hence,
and
is a chart for
We now consider
given by
i.e. operating via the following table,
Then,
for blocks I of the appropriate sizes.
Thus (loosely) Q.E.D
Now on to some examples and comments about why Sard's Theorem is expected, but not obvious:
Example 5
Consider a standard "first year" smooth function
. The "critical points" are in the first year calculus sense where the derivative is zero and the critical values are the images of these points. hence, the set of critical values we expect to be "small"
Example 6
Consider the function that folds the plane in half. The critical points are along the fold, as are the critical values and this line has 1 dimension and so of trivial measure in the plane (not that we have not given it a measure yet!)
Claims:
1)
whose critical values are homeomorphic to a cantor set.
2)
cantor sets with measure arbitrarily close to 1
3)
whose critical points are a cantor set cross a cantor set and whose critical values are everything. Hence we will need our functions to be
in the theorem.
Evil functions
Example 1
Nota benne: Here we are using the name Cantor set for any perfect set with empty interior.
There exists a function
smooth such that its set of critical values is homeomorphic to a Cantor set.
Remember that
is a smooth function such that
We can define the function
in the complement of a Cantor set using the appropriate
in the intervals of the complement.
Notices that
holds the conditions of the example.
We can divide the new
in each step of the construction by
just to make the integral converge. And of course define h(t)=0 on the Cantor set.
Observe that, since
is non negative,
is increasing (observe it is strictly increasing)(it is continuous too!).
Since increasing continuous functions have continuous inverses it is a homeomorphism.