0708-1300/Homework Assignment 9

From Drorbn
Revision as of 11:20, 18 February 2008 by Franklin (talk | contribs)
Jump to navigationJump to search
Announcements go here

Reading

Read, reread and rereread your notes to this point, and make sure that you really, really really, really really really understand everything in them. Do the same every week!

Doing

(Problems 1,2,4,5 below are taken with slight modifications from Hatcher's book, pages 79-80).

  1. Show that if and are covering spaces, then so is their product .
  2. Construct (i.e., describe in explicit terms) a simply-connected covering space of the space that is the union of a sphere and a diameter. Do the same when is the union of a sphere and a circle intersecting it in two points.
  3. Do the same to the space of the term test: .
  4. Find all the connected 2-sheeted and 3-sheeted covering spaces of the "figure eight space" (two circles joined at a point), up to isomorphism of covering spaces without base points.
  5. Let and be the generators of corresponding to the two summands. Draw a picture of the covering space of corresponding to the normal subgroup generated by , , and , and prove that this covering space is indeed the correct one.

Due Date

This assignment is due in class on Thursday February 28, 2008.

Just for Fun

What happens if in problem we consider infinitely many covering spaces. This is, is the product of an infinite family of covering spaces a covering space?