0708-1300/Class notes for Tuesday, September 25

From Drorbn
Revision as of 12:31, 25 September 2007 by Trefor (talk | contribs) (→‎Dror's Notes)
Jump to navigationJump to search
Announcements go here

Dror's Notes

  • Class photo is on Thursday, show up and be at your best! More seriously -
    • The class photo is of course not mandatory, and if you are afraid of google learning about you, you should not be in it.
    • If you want to be in the photo but can't make it on Thursday, I'll take a picture of you some other time and add it as an inset to the main picture.
  • I just got the following email message, which some of you may find interesting:
NSERC - CMS Math in Moscow Scholarships

The Natural Sciences and Engineering Research Council (NSERC) and the
Canadian Mathematical Society (CMS) support scholarships at $9,000
each. Canadian students registered in a mathematics or computer
science program are eligible.

The scholarships are to attend a semester at the small elite Moscow
Independent University.

Math in Moscow program
www.mccme.ru/mathinmoscow/
Application details
www.cms.math.ca/bulletins/Moscow_web/

For additional information please see your department or call the CMS
at 613-562-5702.

Deadline September 30, 2007 to attend the Winter 2008 semester.


Class Notes - First hour

Recall from last class we were proving the equivalence of the two definitions for a smooth manifold. The only nontrivial point that remained to be proved was that if we started with the definition of a manifold in the sense of functional structures and produced charts that these charts would satisfy the property of a manifold, defined in the atlas sense, that is smooth where defined.

Proof

:RnRn is smooth :RnR is smooth i is smooth where is the coordinate projection map.

Now, since is always smooth,

But then we have and so, by a property of functional structures, and hence where it is defined and thus is smooth. QED


Definition 1 (induced structure) Suppose and suppose Y is equipped with a functional structure then the "induced functional structure" on X is

Claim: this does in fact define a functional structure on X


Definition 2 This is the reverse definition of that given directly above. Let and let X be equipped with a functional structure . Then we get a functional structure on Y by Claim: this does in fact define a functional structure on X


Example 1 Let ~ where the equivalence relation ~ is given by x~x for >0 We thus get a canonical projection map and hence, there is an induced functional structure on . Claim: 1) This induced functional structure makes into a manifold 2) This resulting manifold is the same manifold as from the atlas definition given previously


Example 2 Consider the torus thought of as , i.e., the real plane with the equivalence relation that (x,y)~(x+n,y+m) for (x,y) in and (n,m) in

As in the previous example, the torus inherits a functional structure from the real plane we must again check that 1) We get a manifold 2) This is the same manifold as we had previously with the atlas definition


Example 3 Let denote the n dimensional complex projective space, that is, ~ where ~ where

Again, this space inherits a functional structure from and we again need to claim that this yields a manifold.

Proof of Claim

We consider the subsets for

Clearly

Now, for each there is a unique representative for its equivalence class of the form where the 1 is at the ith location.

We thus can get a map from by Hence we have shown (loosely) that our functional structure is locally isormophic to


Definition 3 Product Manifolds

Suppose and are manifolds. Then the product manifold, on the set MxN has an atlas given by are charts in resp. manifolds}

Claim: This does in fact yield a manifold


Example 4 It can be checked that gives the torus a manifold structure, by the product manifold, that is indeed the same as the normal structure given previously.