Add your name / see who's in!
|
#
|
Week of...
|
Links
|
Fall Semester
|
1
|
Sep 10
|
About, Tue, Thu
|
2
|
Sep 17
|
Tue, HW1, Thu
|
3
|
Sep 24
|
Tue, Photo, Thu
|
4
|
Oct 1
|
Questionnaire, Tue, HW2, Thu
|
5
|
Oct 8
|
Thanksgiving, Tue, Thu
|
6
|
Oct 15
|
Tue, HW3, Thu
|
7
|
Oct 22
|
Tue, Thu
|
8
|
Oct 29
|
Tue, HW4, Thu, Hilbert sphere
|
9
|
Nov 5
|
Tue,Thu, TE1
|
10
|
Nov 12
|
Tue, Thu
|
11
|
Nov 19
|
Tue, Thu, HW5
|
12
|
Nov 26
|
Tue, Thu
|
13
|
Dec 3
|
Tue, Thu, HW6
|
Spring Semester
|
14
|
Jan 7
|
Tue, Thu, HW7
|
15
|
Jan 14
|
Tue, Thu
|
16
|
Jan 21
|
Tue, Thu, HW8
|
17
|
Jan 28
|
Tue, Thu
|
18
|
Feb 4
|
Tue
|
19
|
Feb 11
|
TE2, Tue, HW9, Thu, Feb 17: last chance to drop class
|
R
|
Feb 18
|
Reading week
|
20
|
Feb 25
|
Tue, Thu, HW10
|
21
|
Mar 3
|
Tue, Thu
|
22
|
Mar 10
|
Tue, Thu, HW11
|
23
|
Mar 17
|
Tue, Thu
|
24
|
Mar 24
|
Tue, HW12, Thu
|
25
|
Mar 31
|
Referendum,Tue, Thu
|
26
|
Apr 7
|
Tue, Thu
|
R
|
Apr 14
|
Office hours
|
R
|
Apr 21
|
Office hours
|
F
|
Apr 28
|
Office hours, Final (Fri, May 2)
|
Register of Good Deeds
|
Errata to Bredon's Book
|
|
Announcements go here
There is a counterexample to the inverse implication in Problem 1, p. 71.
Let be endowed with the ordinary topology (thus, it is Hausdorff and second countable). Let be an arbitrary connected open set in (that is, an interval). Let consists of all functions identically equal to constant. If is an arbitrary open set, then by theorem on structure of open sets in it is a union of countably many open intervals. We define to be the set of all real-valued functions which are constant on open intervals forming . The family forms a functional structure, as one can check. Furthermore, it satisfies the hypothesis of the theorem: every point has a neighborhood (we take an open interval containing ) such that there exists a function (we define it to be identically equal to ) such that a function is in (it is identically equal to a constant by our definition) if and only if there exists a smooth function such that (if is given, then we define for all , if is given, then we take arbitrary smooth , since is identically equal to constant and, thus, is in ). Clearly, is not a smooth manifold.
Even taking as any second countable topological space with the functional structure of constant functions will do the work.
Adding to the statement of the problem that the function is invertible we get a correct theorem. Maybe other weakening of this condition works.