Add your name / see who's in!
|
#
|
Week of...
|
Links
|
Fall Semester
|
1
|
Sep 10
|
About, Tue, Thu
|
2
|
Sep 17
|
Tue, HW1, Thu
|
3
|
Sep 24
|
Tue, Photo, Thu
|
4
|
Oct 1
|
Questionnaire, Tue, HW2, Thu
|
5
|
Oct 8
|
Thanksgiving, Tue, Thu
|
6
|
Oct 15
|
Tue, HW3, Thu
|
7
|
Oct 22
|
Tue, Thu
|
8
|
Oct 29
|
Tue, HW4, Thu, Hilbert sphere
|
9
|
Nov 5
|
Tue,Thu, TE1
|
10
|
Nov 12
|
Tue, Thu
|
11
|
Nov 19
|
Tue, Thu, HW5
|
12
|
Nov 26
|
Tue, Thu
|
13
|
Dec 3
|
Tue, Thu, HW6
|
Spring Semester
|
14
|
Jan 7
|
Tue, Thu, HW7
|
15
|
Jan 14
|
Tue, Thu
|
16
|
Jan 21
|
Tue, Thu, HW8
|
17
|
Jan 28
|
Tue, Thu
|
18
|
Feb 4
|
Tue
|
19
|
Feb 11
|
TE2, Tue, HW9, Thu, Feb 17: last chance to drop class
|
R
|
Feb 18
|
Reading week
|
20
|
Feb 25
|
Tue, Thu, HW10
|
21
|
Mar 3
|
Tue, Thu
|
22
|
Mar 10
|
Tue, Thu, HW11
|
23
|
Mar 17
|
Tue, Thu
|
24
|
Mar 24
|
Tue, HW12, Thu
|
25
|
Mar 31
|
Referendum,Tue, Thu
|
26
|
Apr 7
|
Tue, Thu
|
R
|
Apr 14
|
Office hours
|
R
|
Apr 21
|
Office hours
|
F
|
Apr 28
|
Office hours, Final (Fri, May 2)
|
Register of Good Deeds
|
Errata to Bredon's Book
|
|
Announcements go here
Dror's Notes
- Class photo is on Thursday, show up and be at your best! More seriously -
- The class photo is of course not mandatory, and if you are afraid of google learning about you, you should not be in it.
- If you want to be in the photo but can't make it on Thursday, I'll take a picture of you some other time and add it as an inset to the main picture.
- I just got the following email message, which some of you may find interesting:
NSERC - CMS Math in Moscow Scholarships
The Natural Sciences and Engineering Research Council (NSERC) and the
Canadian Mathematical Society (CMS) support scholarships at $9,000
each. Canadian students registered in a mathematics or computer
science program are eligible.
The scholarships are to attend a semester at the small elite Moscow
Independent University.
Math in Moscow program
www.mccme.ru/mathinmoscow/
Application details
www.cms.math.ca/bulletins/Moscow_web/
For additional information please see your department or call the CMS
at 613-562-5702.
Deadline September 30, 2007 to attend the Winter 2008 semester.
Class Notes - First hour
Recall from last class we were proving the equivalence of the two definitions for a smooth manifold. The only nontrivial point that remained to be proved was that if we started with the definition of a manifold in the sense of functional structures and produced charts that these charts would satisfy the property of a manifold, defined in the atlas sense, that is smooth where defined.
Proof
:RnRn
is smooth :RnR is smooth i
is smooth where is the coordinate projection map.
Now, since is always smooth,
But then we have
and so, by a property of functional structures,
and hence where it is defined and thus is smooth.
QED
Definition 1 (induced structure)
Suppose and suppose Y is equipped with a functional structure then the "induced functional structure" on X is
Claim: this does in fact define a functional structure on X
Definition 2
This is the reverse definition of that given directly above. Let and let X be equipped with a functional structure . Then we get a functional structure on Y by
Claim: this does in fact define a functional structure on X
Example 1
Let ~
where the equivalence relation ~ is given by x~x for >0
We thus get a canonical projection map
and hence, there is an induced functional structure on .
Claim:
1) This induced functional structure makes into a manifold
2) This resulting manifold is the same manifold as from the atlas definition given previously
Example 2
Consider the torus thought of as , i.e., the real plane with the equivalence relation that (x,y)~(x+n,y+m) for (x,y) in and (n,m) in
As in the previous example, the torus inherits a functional structure from the real plane we must again check that
1) We get a manifold
2) This is the same manifold as we had previously with the atlas definition
Example 3
Let denote the n dimensional complex projective space, that is,
~ where
~
where
Again, this space inherits a functional structure from and we again need to claim that this yields a manifold.
Proof of Claim
We consider the subsets for
Clearly
Now, for each there is a unique representative for its equivalence class of the form where the 1 is at the ith location.
We thus can get a map from by
Hence we have shown (loosely) that our functional structure is locally isormophic to
Definition 3 Product Manifolds
Suppose and are manifolds. Then the product manifold, on the set MxN has an atlas given by
are charts in resp. manifolds}
Claim: This does in fact yield a manifold
Example 4
It can be checked that gives the torus a manifold structure, by the product manifold, that is indeed the same as the normal structure given previously.