0708-1300/Class notes for Tuesday, September 11: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 50: Line 50:


==Class Notes==
==Class Notes==
=Differentiability=
===Differentiability===
Let <math>U</math>, <math>V</math> and <math>W</math> be two normed finite dimensional vector spaces and let <math>f:V\rightarrow W</math> be a function defined on a neighborhood of the point <math>x</math>
Let <math>U</math>, <math>V</math> and <math>W</math> be two normed finite dimensional vector spaces and let <math>f:V\rightarrow W</math> be a function defined on a neighborhood of the point <math>x</math>



Revision as of 15:43, 11 September 2007

Announcements go here

In Small Scales, Everything's Linear

06-240-QuiltBeforeMap.png [math]\displaystyle{ \longrightarrow }[/math] 06-240-QuiltAfterMap.png
[math]\displaystyle{ z }[/math] [math]\displaystyle{ \mapsto }[/math] [math]\displaystyle{ z^2 }[/math]

Code in Mathematica:

QuiltPlot[{f_,g_}, {x_, xmin_, xmax_, nx_}, {y_, ymin_, ymax_, ny_}] :=
Module[
  {dx, dy, grid, ix, iy},
  SeedRandom[1];
  dx=(xmax-xmin)/nx;
  dy=(ymax-ymin)/ny;
  grid = Table[
    {x -> xmin+ix*dx, y -> ymin+iy*dy},
    {ix, 0, nx}, {iy, 0, ny}
  ];
  grid = Map[({f, g} /. #)&, grid, {2}];
  Show[
    Graphics[Table[
      {
        RGBColor[Random[], Random[], Random[]],
        Polygon[{
          grid[[ix, iy]],
          grid[[ix+1, iy]],
          grid[[ix+1, iy+1]],
          grid[[ix, iy+1]]
        }]
      },
      {ix, nx}, {iy, ny}
    ]],
    Frame -> True
  ]
]

QuiltPlot[{x, y}, {x, -10, 10, 8}, {y, 5, 10, 8}]
QuiltPlot[{x^2-y^2, 2*x*y}, {x, -10, 10, 8}, {y, 5, 10, 8}]

See also 06-240/Linear Algebra - Why We Care.

Class Notes

Differentiability

Let [math]\displaystyle{ U }[/math], [math]\displaystyle{ V }[/math] and [math]\displaystyle{ W }[/math] be two normed finite dimensional vector spaces and let [math]\displaystyle{ f:V\rightarrow W }[/math] be a function defined on a neighborhood of the point [math]\displaystyle{ x }[/math]

Definition:

We say that [math]\displaystyle{ f }[/math] is differentiable (diffable) if there is a linear map [math]\displaystyle{ L }[/math] so that

[math]\displaystyle{ \lim_{h\rightarrow0}\frac{|f(x+h)-f(x)-L(h)|}{|h|}. }[/math]

In this case we will say that [math]\displaystyle{ L }[/math] is a differential of [math]\displaystyle{ f }[/math] and will denote it by [math]\displaystyle{ df_{x} }[/math].

Theorem

If [math]\displaystyle{ f:V\rightarrow W }[/math] and [math]\displaystyle{ g:U\rightarrow V }[/math] are diffable maps then the following asertions holds:

1)[math]\displaystyle{ df_{x} }[/math] is unique.

2)[math]\displaystyle{ d(f+g)_{x}=df_{x}+dg_{x} }[/math]

3)If [math]\displaystyle{ f }[/math] is linear then [math]\displaystyle{ df_{x}=f }[/math]

4)[math]\displaystyle{ d(f\circ g)_{x}=df_{g(x)}\circ dg_{x} }[/math]

5)For every scalar number [math]\displaystyle{ \alpha }[/math] it holds [math]\displaystyle{ d(\alpha f)_{x}=\alpha df_{x} }[/math]