0708-1300/Class notes for Tuesday, September 11: Difference between revisions
From Drorbn
Jump to navigationJump to search
| Line 50: | Line 50: | ||
==Class Notes== |
==Class Notes== |
||
=Differentiability= |
|||
Let <math>U</math>, <math>V</math> and <math>W</math> be two normed finite dimensional vector spaces and let <math>f:V\rightarrow W</math> be a function defined on a neighborhood of the point <math>x</math> |
Let <math>U</math>, <math>V</math> and <math>W</math> be two normed finite dimensional vector spaces and let <math>f:V\rightarrow W</math> be a function defined on a neighborhood of the point <math>x</math> |
||
| Line 68: | Line 69: | ||
2)<math>d(f+g)_{x}=df_{x}+dg_{x}</math> |
2)<math>d(f+g)_{x}=df_{x}+dg_{x}</math> |
||
3)If <math>f</math> is linear then <math> |
3)If <math>f</math> is linear then <math>df_{x}=f</math> |
||
4)<math>d(f\circ g)_{x}=df_{g(x)}\circ dg_{x}</math> |
4)<math>d(f\circ g)_{x}=df_{g(x)}\circ dg_{x}</math> |
||
Revision as of 15:42, 11 September 2007
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In Small Scales, Everything's Linear
Code in Mathematica:
QuiltPlot[{f_,g_}, {x_, xmin_, xmax_, nx_}, {y_, ymin_, ymax_, ny_}] :=
Module[
{dx, dy, grid, ix, iy},
SeedRandom[1];
dx=(xmax-xmin)/nx;
dy=(ymax-ymin)/ny;
grid = Table[
{x -> xmin+ix*dx, y -> ymin+iy*dy},
{ix, 0, nx}, {iy, 0, ny}
];
grid = Map[({f, g} /. #)&, grid, {2}];
Show[
Graphics[Table[
{
RGBColor[Random[], Random[], Random[]],
Polygon[{
grid[[ix, iy]],
grid[[ix+1, iy]],
grid[[ix+1, iy+1]],
grid[[ix, iy+1]]
}]
},
{ix, nx}, {iy, ny}
]],
Frame -> True
]
]
QuiltPlot[{x, y}, {x, -10, 10, 8}, {y, 5, 10, 8}]
QuiltPlot[{x^2-y^2, 2*x*y}, {x, -10, 10, 8}, {y, 5, 10, 8}]
See also 06-240/Linear Algebra - Why We Care.
Class Notes
Differentiability
Let , and be two normed finite dimensional vector spaces and let be a function defined on a neighborhood of the point
Definition:
We say that is differentiable (diffable) if there is a linear map so that
In this case we will say that is a differential of and will denote it by .
Theorem
If and are diffable maps then the following asertions holds:
1) is unique.
2)
3)If is linear then
4)
5)For every scalar number it holds