0708-1300/Class notes for Tuesday, September 11: Difference between revisions

From Drorbn
Jump to navigationJump to search
Line 55: Line 55:


We say that <math>f</math> is differentiable (''diffable'') if there is a linear map <math>L</math> so that
We say that <math>f</math> is differentiable (''diffable'') if there is a linear map <math>L</math> so that
<math>\lim_{h\rightarrow0}\frac{|f(x+h)-f(x)-L(h)|}{|h|}.</math> In this case we will say that <math>L</math> is a differential of <math>f</math> and will denote it by <math>df_{x}</math>.
<math>\lim_{h\rightarrow0}\frac{|f(x+h)-f(x)-L(h)|}{|h|}.</math>
In this case we will say that <math>L</math> is a differential of <math>f</math> and will denote it by <math>df_{x}</math>.


'''Theorem'''
'''Theorem'''
Line 61: Line 62:
If <math>f:V\rightarrow W</math> and <math>g:U\rightarrow V</math> are ''diffable'' maps then the following asertions holds:
If <math>f:V\rightarrow W</math> and <math>g:U\rightarrow V</math> are ''diffable'' maps then the following asertions holds:


1)<math>df_{x}</math> is unique.
1)<math>df_{x}</math> is unique.

2)<math>d(f+g)_{x}=df_{x}+dg_{x}</math>
3)If <math>f</math> is linear then <math>d(f)_{x}=f</math>
2)<math>d(f+g)_{x}=df_{x}+dg_{x}</math>

4)<math>d(f\circ g)_{x}=df_{g(x)}\circ dg_{x}</math>
3)If <math>f</math> is linear then <math>d(f)_{x}=f</math>

4)<math>d(f\circ g)_{x}=df_{g(x)}\circ dg_{x}</math>

5)For every scalar number <math>\alpha</math> it holds <math>d(\alpha f)_{x}=\alpha df_{x}</math>

Revision as of 15:38, 11 September 2007

Announcements go here

In Small Scales, Everything's Linear

06-240-QuiltBeforeMap.png 06-240-QuiltAfterMap.png

Code in Mathematica:

QuiltPlot[{f_,g_}, {x_, xmin_, xmax_, nx_}, {y_, ymin_, ymax_, ny_}] :=
Module[
  {dx, dy, grid, ix, iy},
  SeedRandom[1];
  dx=(xmax-xmin)/nx;
  dy=(ymax-ymin)/ny;
  grid = Table[
    {x -> xmin+ix*dx, y -> ymin+iy*dy},
    {ix, 0, nx}, {iy, 0, ny}
  ];
  grid = Map[({f, g} /. #)&, grid, {2}];
  Show[
    Graphics[Table[
      {
        RGBColor[Random[], Random[], Random[]],
        Polygon[{
          grid[[ix, iy]],
          grid[[ix+1, iy]],
          grid[[ix+1, iy+1]],
          grid[[ix, iy+1]]
        }]
      },
      {ix, nx}, {iy, ny}
    ]],
    Frame -> True
  ]
]

QuiltPlot[{x, y}, {x, -10, 10, 8}, {y, 5, 10, 8}]
QuiltPlot[{x^2-y^2, 2*x*y}, {x, -10, 10, 8}, {y, 5, 10, 8}]

See also 06-240/Linear Algebra - Why We Care.

Class Notes

Let , and be two normed finite dimensional vector spaces and let be a function defined on a neighborhood of the point

Definition:

We say that is differentiable (diffable) if there is a linear map so that In this case we will say that is a differential of and will denote it by .

Theorem

If and are diffable maps then the following asertions holds:

1) is unique.

2)

3)If is linear then

4)

5)For every scalar number it holds