09240/About This Class

Crucial Information
Agenda: Understand linear algebra, the simplest algebra there is, and come to appreciate that simplest is also the most fundamental.
Hidden Agenda: Learn (by example) how "real" math is done: abstraction and generalization, definitions, theorems and proofs.
Instructor: Dror BarNatan, drorbn@math.toronto.edu, Bahen 6178, 4169465438. Office hours: by appointment.
Classes: Tuesdays 13 and Thursdays 12 at MP 103.
Teaching Assistants: Alan Lai and Nevena Francetic.
Tutorials: Thursdays 2:154 at UC 144 if the last digit of your student number is even, and at GB 248 if it is odd. No tutorials on the first week of classes. TA Consultation Hours: Monday 6PM8PM and Thursdays 11AM1PM at Bahen 6283. 
URL: https://drorbn.net/drorbn/index.php?title=09240.
Abstract
Taken from the Faculty of Arts and Science Calendar:
A theoretical approach to: vector spaces over arbitrary fields including , . Subspaces, bases and dimension. Linear transformations, matrices, change of basis, similarity, determinants. Polynomials over a field (including unique factorization, resultants). Eigenvalues, eigenvectors, characteristic polynomial, diagonalization. Minimal polynomial, CayleyHamilton theorem.
 Prerequisite: MCV4U, MHF4U
 Corequisite: MAT157Y1
Text Book(s)
Our main text book will be Linear Algebra (fourth edition) by Friedberg, Insel and Spence, ISBN 0130084514; it is a required reading. An errata is at http://www.math.ilstu.edu/linalg/errata.html.
I am told that Schaum’s Outline of Linear Algebra, ISBN 0071362002, may contain useful examples; it is not a required reading.
Wiki
The class web site is a wiki, as in Wikipedia  meaning that anyone can and is welcome to edit almost anything and in particular, students can post notes, comments, pictures, whatever. Some rules, though 
 This wiki is a part of my (Dror's) academic web page. All postings on it must be classrelated (or related to one of the other projects I'm involved with).
 You must login to edit. To get an account, email me your preferred login name, your real name and your email address if different from the address you are writing from.
 Criticism is fine, but no insults or foul language, please.
 I (Dror) will allow myself to exercise editorial control, when necessary.
 The titles of all pages related to this class should begin with "09240/" or with "09240", just like the title of this page.
Some further editing help is available at Help:Contents.
Marking Scheme
There will be one term test (25% of the total grade) and a final exam (50%), as well as about 9 homework assignments (25%).
The Term Test
The term test will take place in class and on the first tutorial hour on Thursday October 22th, 13PM. A student who misses the term test without providing a valid reason (for example, a doctor’s note) within one week of the test will receive a mark of 0 on the term test. There will be no makeup term test. If a student misses the term test for a valid reason, the weight of the problem sets will increase to 35% and the weight of the final exam to 65%.
Homework
Assignments will be posted on the course web page and distributed in class (usually on Tuesdays) approximately on the weeks shown in the class timeline. They will be due a week later at the tutorials (on Thursdays) and they will be (at least partially) marked by the TAs. All students (including those who join the course late) will receive a mark of 0 on each assignment not handed in; though in computing the homework grade, your worst two assignments will not count. I encourage you to discuss the assignments with other students or even browse the web, so long as you do at least some of the thinking on your own and you write up your own solutions. Remember that cheating is always possible and may increase your homework grade a bit. But it will hurt your appreciation of yourself, your knowledge and your exam grades a lot more.
Good Deeds
Students will be able to earn up to 25 "good deeds" points throughout the year for doing services to the class as a whole. There is no preset system for awarding these points, but the following will definitely count:
 Drawing a beautiful picture to illustrate a point discussed in class and posting it on this site.
 Taking class notes in nice handwriting, scanning them and posting them here.
 Typing up or formatting somebody else's class notes, correcting them or expanding them in any way.
 Writing an essay on expanding on anything mentioned in class and posting it here; correcting or expanding somebody else's article.
 Doing anything on our 09240/To do list.
 Any other service to the class as a whole.
Good deed points will count towards your final grade! If you got of those, they are solidly yours and the above formula for the final grade will only be applied to the remaining points. So if you got 25 good deed points (say) and your final grade is 80, I will report your grade as . Yet you can get an overall 100 even without doing a single good deed.
Important. For your good deeds to count, you must do them under your own name. So you must set up an account for yourself on this wiki and you must use it whenever you edit something. I will periodically check Recent changes to assign good deeds credits.
Class Photo
To help me learn your names, I will take a class photo on Thursday of the third week of classes. I will post the picture on the class' web site and you will be required to send me an email and identify yourself in the picture or to identify yourself on the Class Photo page of this wiki.
Accessibility Needs
The University of Toronto is committed to accessibility. If you require accommodations for a disability, or have any accessibility concerns about the course, the classroom or course materials, please contact Accessibility Services as soon as possible: disability.services@utoronto.ca or http://studentlife.utoronto.ca/accessibility.
How to Succeed in this Class
 Keep up! Don't fall behind on reading, listening, and doing assignments! University goes at a different pace than high school. New material is covered once and just once. There will be no going over the same thing again and again  if you fall behind, you stay behind. Unless you are an Einstein, there is no way to do well in this class merely by attending lectures  you must think about the material more than 3 or 5 hours a week if you want it to sink in. And if you are planning on not attending lectures, well, think again. Most people find it very hard to pace their own studies without a human contact; if you'll try, you are likely to discover the hard way that you belong to the majority.
 If in high school you were the best in your class in math, now remember that everybody around you was the same. You may find that what was enough then simply doesn't cut it any more. Try to catch that early in the year!
 Math is about understanding, not about memorizing. To understand is to internalize; it is to come to the point where whatever the professor does on the blackboard or whatever is printed in the books becomes yours; it is to come to the point where you appreciate why everything is done the way it is done, what does it mean, what are the reasons and motivations and what is it all good for. Don't settle for less!
 Keep asking yourself questions; many of them will be answered in class, but not all. Remember the old Chinese proverb:
The saddest that can happen to you in this class is if you won't notice the door being opened.