# 09-240/Classnotes for Tuesday October 20

WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting! Visit this pages' history tab to see who added what and when.

Definition: V and W are "isomorphic" if there exist linear transformations ${\displaystyle \mathrm {T:V\rightarrow W} }$ and ${\displaystyle \mathrm {S:W\rightarrow V} }$ such that ${\displaystyle \mathrm {T\circ S} =I_{\mathrm {W} }}$ and ${\displaystyle \mathrm {S\circ T} =I_{\mathrm {V} }}$

Theorem: If V and W are finite-dimensional over F, then V is isomorphic to W iff dim(V) = dim(W)

Corollary: If dim(V) = n then ${\displaystyle \mathrm {V} \cong F^{n}}$

Note: ${\displaystyle \cong }$ represents "is isomorphic to"

Two "mathematical structures" are "isomorphic" if there exists a "bijection" between their elements which preserves all relevant relations between such elements.

Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.

Example: The game of 15. Players alternate drawing one card each.

Sample game:

• X picks 3
• O picks 7
• X picks 8
• O picks 4
• X picks 1
• O picks 6
• X picks 2
• O picks 5
• 4 + 6 + 5 = 15. O wins.

This game is isomorphic to Tic Tac Toe!

 4 9 2 3 5 7 8 1 6
X: 3, 8, 1, 2
O: 7, 4, 6, 5 -- Wins!

Converts to:

 O 9 X X O O X X O
${\displaystyle \mathrm {S\circ T} =I_{\mathrm {V} }}$
${\displaystyle \mathrm {T\circ S} =I_{\mathrm {W} }}$
${\displaystyle \mathrm {T} (O_{\mathrm {V} })=O_{\mathrm {W} }}$
${\displaystyle \mathrm {T} (x+y)=T(x)+T(y)}$
${\displaystyle \mathrm {T} (cv)=c\mathrm {T} (v)}$
Likewise for ${\displaystyle \mathrm {S} }$
${\displaystyle z=x+y\Rightarrow \mathrm {T} (z)=\mathrm {T} (x)+\mathrm {T} (y)}$
${\displaystyle u=7v\Rightarrow \mathrm {T} (u)=7\mathrm {T} (v)}$

Proof of Theorem ${\displaystyle \iff }$ Assume dim(V) = dim(W) = n

There exists basis ${\displaystyle \beta =\{u_{1},\ldots ,u_{n}\}\in \mathrm {V} }$
${\displaystyle \alpha =\{w_{1},...,w_{n}\}\in \mathrm {W} }$
by an earlier theorem, there exists a l.t. ${\displaystyle \mathrm {T:V\rightarrow W} }$ such that ${\displaystyle \mathrm {T} (u_{i})=w_{i}}$

${\displaystyle \mathrm {T} (\sum a_{i}u_{i})=\sum a_{i}\mathrm {T} (u_{i})=\sum a_{i}w_{i}}$

There exists a l.t. ${\displaystyle \mathrm {S:W\rightarrow V} }$ such that ${\displaystyle \mathrm {S} (w_{i})=u_{i}}$

## Claim

${\displaystyle \mathrm {S\circ T} =I_{\mathrm {V} }}$
${\displaystyle \mathrm {T\circ S} =I_{\mathrm {W} }}$

## Proof

If u∈${\displaystyle \mathrm {V} }$ unto U=∑aiui

(S∘T)(u)=S(T(u))=S(T(∑aiui))
=S(∑aiwi)=∑aiui=u
⇒S∘T=Iv...
⇒Assume T&S as above exist
Choose a basis β= (U1...Un) of V

## Claim

α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)

is a basis of W, so dim W=n

## Proof

α is lin. indep.

T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
Apply S to both sides:
0=∑aiui
So ∃iai=0 as β is a basis

α Spans W

Given any w∈W let u=S(W)
As β is a basis find ais in F s.t. v=∑aiui

Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi

∴ I win!!! (QED)

T T
V → W ⇔ V' → W'
rank T=rank T'

Fix t:V→Wa l.t.${\displaystyle Insertformulahere}$

## Definition

1. N(T) = ker(T) = {u∈V : Tu = 0W}
2. R(T) = im(T) = {T(u) : u∈V}

## Prop/Def

1. N(T) ⊂ V is a subspace of V-------nullity(T) := dim N(T)
2. R(T) ⊂ W is a subspace of W--------rank(T) := dim R(T)

## Proof 1

x,y ∈N(T)⇒T(x)=0, T(y)=0
T(x+y)=T9x)+T(y)=0+0=0
x+y∈N(T)
∴ I win!!! (QED)

## Proof 2

Let y∈R(T)⇒fix x s.t y=T(x),
--------7y=7T(x)=T(7x)
----------⇒7y∈R(T)
∴ I win!!! (QED)

## Examples

1.

0:V→W---------N(0)=V
R(0)={0W}-----------nullity(0)=dim V
--------------rank(0)=0
dim V+0=dimV

2.

IV:V→V
N(I)={0}
nullity=0
R(I)=dim V
2'If T:V→W is an imorphism
N(T)={0}
nullity =0
R(T)=W
rank=dim W
0+dim V=dim V

3.

D:P7(R)→P7(R)
Df=f'
N(D)={C⊃C°: C∈R}=P0(R)
R(D)⊂P6(R)
nullity(D)=1
basis:(1x°)
rank(D)=7
7+1=8

4.

3':D2:P7(R)
D2f=f
W(D2)={ax+b: a,b∈R}=P1(R)
nullity(D2)=2
R(D2)=P5(R)
rank (D2)=6
6+2=8

## Theorem

(rank-nullity Theorem, a.k.a. dimension Theorem)

nullity(T)+rank(T)=dim V
(for a l.t. T:V→W) when V is F.d.

## Proof

(To be continued next day)