09-240/Classnotes for Tuesday September 22: Difference between revisions
(→Class notes for today: Add vector section before examples.) |
(→Proof of VS4: Incomplete examples, and food for thought) |
||
| Line 38: | Line 38: | ||
Set <math>y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix}</math> and note |
Set <math>y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix}</math> and note |
||
: <math>x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n}</math> |
: <math>x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n}</math> |
||
=== Examples === |
|||
# <math>F^n \mbox{ for } n \in \mathbb N</math> |
|||
#: <math>F^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} : a_i \in F \right\}</math> |
|||
#: <math>\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}</math> |
|||
#: <math>a \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} ab_1 \\ ab_2 \\ \vdots \\ ab_n \end{pmatrix}</math> |
|||
#: ... |
|||
# <math>\mathrm M_{m \times n}(F)</math> |
|||
#: ... |
|||
=== Food for thought === |
|||
What is wrong with setting |
|||
<math> |
|||
\begin{pmatrix} |
|||
2 & 3 \\ |
|||
4 & 5 \\ |
|||
\end{pmatrix} \cdot \begin{pmatrix} |
|||
6 & 7 \\ |
|||
8 & 9 \\ |
|||
\end{pmatrix} = \begin{pmatrix} |
|||
2 \cdot 6 & 3 \cdot 7 \\ |
|||
4 \cdot 8 & 5 \cdot 9 \\ |
|||
\end{pmatrix} = \begin{pmatrix} |
|||
12 & 21 \\ |
|||
32 & 45 \\ |
|||
\end{pmatrix} ? |
|||
</math> |
|||
# Unnecessary for a V.S. |
|||
# This is useless |
|||
Revision as of 16:46, 22 September 2009
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Some links
- The Complex Numbers by Computer.
- Dori Eldar's work on "mechanical computations": Machines as Calculating Devices and Computing the function the hard way.
- The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5".
Class notes for today
Vectors:
- can be added
- can be multiplied by a number (not another vector)
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal F} be a field. A vector space Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf V} over the field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal F} is a set (of vectors) with a special element , a binary operation , a binary operation .
| Convention for today:
|
VS1
VS2
VS3
VS4
VS5
VS6
VS7
VS8
Proof of VS4
Take an arbitrary Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in F^n}
Set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix}} and note
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n}}
Examples
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^n \mbox{ for } n \in \mathbb N}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} : a_i \in F \right\}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} ab_1 \\ ab_2 \\ \vdots \\ ab_n \end{pmatrix}}
- ...
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathrm M_{m \times n}(F)}
- ...
Food for thought
What is wrong with setting
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} 2 & 3 \\ 4 & 5 \\ \end{pmatrix} \cdot \begin{pmatrix} 6 & 7 \\ 8 & 9 \\ \end{pmatrix} = \begin{pmatrix} 2 \cdot 6 & 3 \cdot 7 \\ 4 \cdot 8 & 5 \cdot 9 \\ \end{pmatrix} = \begin{pmatrix} 12 & 21 \\ 32 & 45 \\ \end{pmatrix} ? }
- Unnecessary for a V.S.
- This is useless