09-240/Classnotes for Tuesday September 29
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Yangjiay - Page 1
Vector subspaces
Definition. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf W \subset \mathbf V} is a "subspace" if it is a vector space under the operations it inherits from V.
Theorem. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf W \subset \mathbf V} is a subspace iff it is "closed under addition and vector multiplication by scalars", i.e. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x, y \in \mathbf W \Rightarrow x + y \in \mathbf W} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \in F, x \in \mathbf W \Rightarrow ax \in \mathbf W} .
Goal: Every VS has a "basis", so while we don't have to use coordinates, we always can.
Examples of what is not a subspace (without diagrams):
- A unit circle is not closed under addition of scalar multiplication.
- The x-axis Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cup} y-axis is closed under scalar multiplication, but not under addition.
- A single quadrant of the Cartesian plane is closed under addition, but not under scalar multiplication.
Examples of subspaces:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{0\}}
- Any VS (which is a subspace of itself)
- A line passing through the origin (if it does not pass through the origin, then it is not closed under scalar multiplication)
- A plane
- Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf V = \mathbb M_{n \times n}(F)} . If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W = \{ A \in \mathbf V : A^\top = A \}} , then W is a subspace of V. (W is the set of "symmetric" matrices in V; AT denotes the transpose of A.)
-
- where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{tr}(A) = \sum_{i=1}^n a_{ii}} is the "trace" of A.
- Properties of trace:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{tr}(0 \cdot A) = 0}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{tr}(cA) = c \cdot \operatorname{tr}(A)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{tr}(A + B) = \operatorname{tr}(A) + \operatorname{tr}(B)}
- so W is indeed a subspace.
Claim: If W1 and W2 are subspaces of V, then
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_1 \cap W_2 = \{ x \in \mathbf V : x \in \mathbf W_1 \mbox{ and } \mathbf W_2 \}} is a subspace of V, W1, and W2.
- But Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W_1 \cup W_2 = \{ x \in \mathbf V : x \in \mathbf W_1 \mbox{ or } x \in \mathbf W_2 \}} is a subspace of V iff Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf W_1 \subset \mathbf W_2} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf W_2 \subset \mathbf W_1} . (See HW2 pp. 20-21, #19.)
Linear combinations
Definition: A vector u is a "linear combination" (l.c.) of vectors u1, ..., un if there exists scalars a1, ..., an such that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n}
Example: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb P_n(F) = \{ \mbox{Polynomials of degree at most } n \mbox{ with coefficients in } F \}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \left\{ \sum_{i=0}^n a_i x^i : a_i \in F \right\}}
Definition: A subset Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S \subset \mathbf V} "generates" or "spans" V iff the set of linear combinations of elements of S is all of V.
Example: Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf V = \mathbb M_{n \times n}(\real)}
Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = \{ M_1, M_2, M_3, M_4 \}}
generates V.
Proof: Given Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb M_{2 \times 2}(\real)}
, write
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} a & b \\ c & d \end{pmatrix} = aM_1 + bM_2 + cM_3 + dM_4.}
Example: Let
Does Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{ N_1, N_2, N_3, N_4 \}}
generate V?
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1 = -\frac23 N_1 + \frac13(N_2 + N_3 + N_4)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_2 = -\frac23 N_2 + \frac13(N_1 + N_3 + N_4)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_3 = -\frac23 N_3 + \frac13(N_1 + N_2 + N_4)}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_4 = -\frac23 N_4 + \frac13(N_1 + N_2 + N_3)}
Then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{pmatrix} a & b \\ c & d \end{pmatrix} = aM_1 + bM_2 + cM_3 + dM_4 =}
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a \cdot \left( -\frac23 N_1 + \frac13(N_2 + N_3 + N_4) \right) + b \cdot \left( -\frac23 N_2 + \frac13(N_1 + N_3 + N_4) \right) + \ldots}
Theorem: If Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S \in \mathbf V} , then Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \operatorname{span}(S) = } {all l.c. of elements of S} is a subspace of V.