Additions to the MAT 240 web site no longer count towards good deed points
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 7
|
Tue, About, Thu
|
2
|
Sep 14
|
Tue, HW1, HW1 Solution, Thu
|
3
|
Sep 21
|
Tue, HW2, HW2 Solution, Thu, Photo
|
4
|
Sep 28
|
Tue, HW3, HW3 Solution, Thu
|
5
|
Oct 5
|
Tue, HW4, HW4 Solution, Thu,
|
6
|
Oct 12
|
Tue, Thu
|
7
|
Oct 19
|
Tue, HW5, HW5 Solution, Term Test on Thu
|
8
|
Oct 26
|
Tue, Why LinAlg?, HW6, HW6 Solution, Thu
|
9
|
Nov 2
|
Tue, MIT LinAlg, Thu
|
10
|
Nov 9
|
Tue, HW7, HW7 Solution Thu
|
11
|
Nov 16
|
Tue, HW8, HW8 Solution, Thu
|
12
|
Nov 23
|
Tue, HW9, HW9 Solution, Thu
|
13
|
Nov 30
|
Tue, On the final, Thu
|
S
|
Dec 7
|
Office Hours
|
F
|
Dec 14
|
Final on Dec 16
|
To Do List
|
The Algebra Song!
|
Register of Good Deeds
|
Misplaced Material
|
Add your name / see who's in!
|
|
WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting!
Visit this pages' history tab to see who added what and when.
Definition: V and W are "isomorphic" if there exist linear transformations and such that and
Theorem: If V and W are finite-dimensional over F, then V is isomorphic to W iff dim(V) = dim(W)
Corollary: If dim(V) = n then
- Note: represents "is isomorphic to"
Two "mathematical structures" are "isomorphic" if there exists a "bijection" between their elements which preserves all relevant relations between such elements.
Example: Plastic chess is "isomorphic" to ivory chess, but it is not isomorphic to checkers.
Example: The game of 15. Players alternate drawing one card each.
Goal: To have exactly three of your cards add to 15.
Sample game:
- X picks 3
- O picks 7
- X picks 8
- O picks 4
- X picks 1
- O picks 6
- X picks 2
- O picks 5
- 4 + 6 + 5 = 15. O wins.
This game is isomorphic to Tic Tac Toe!
- X: 3, 8, 1, 2
- O: 7, 4, 6, 5 -- Wins!
Converts to:
- Likewise for
Proof of Theorem Assume dim(V) = dim(W) = n
- There exists basis
- by an earlier theorem, there exists a l.t. such that
There exists a l.t. such that
Claim
Proof
If u∈ unto U=∑aiui
- (S∘T)(u)=S(T(u))=S(T(∑aiui))
- =S(∑aiwi)=∑aiui=u
- ⇒S∘T=Iv...
- ⇒Assume T&S as above exist
- Choose a basis β= (U1...Un) of V
Claim
α=(W1=Tu1, W2=Tu2, ..., Wn=Tun)
- is a basis of W, so dim W=n
Proof
α is lin. indep.
- T(0)=0=∑aiwi=∑aiTui=T(∑aiui)
- Apply S to both sides:
- 0=∑aiui
- So ∃iai=0 as β is a basis
α Spans W
- Given any w∈W let u=S(W)
- As β is a basis find ais in F s.t. v=∑aiui
Apply T to both sides: T(S(W))=T(u)=T(∑aiui)=∑aiT(ui)=∑aiWi
- ∴ I win!!! (QED)
- T T
- V → W ⇔ V' → W'
- rank T=rank T'
Fix t:V→Wa l.t.
Definition
- N(T) = ker(T) = {u∈V : Tu = 0W}
- R(T) = im(T) = {T(u) : u∈V}
Prop/Def
- N(T) ⊂ V is a subspace of V-------nullity(T) := dim N(T)
- R(T) ⊂ W is a subspace of W--------rank(T) := dim R(T)
Proof 1
- x,y ∈N(T)⇒T(x)=0, T(y)=0
- T(x+y)=T9x)+T(y)=0+0=0
- x+y∈N(T)
- ∴ I win!!! (QED)
Proof 2
- Let y∈R(T)⇒fix x s.t y=T(x),
- --------7y=7T(x)=T(7x)
- ----------⇒7y∈R(T)
- ∴ I win!!! (QED)
Examples
1.
- 0:V→W---------N(0)=V
- R(0)={0W}-----------nullity(0)=dim V
- --------------rank(0)=0
- dim V+0=dimV
2.
- IV:V→V
- N(I)={0}
- nullity=0
- R(I)=dim V
- 2'If T:V→W is an imorphism
- N(T)={0}
- nullity =0
- R(T)=W
- rank=dim W
- 0+dim V=dim V
3.
- D:P7(R)→P7(R)
- Df=f'
- N(D)={C⊃C°: C∈R}=P0(R)
- R(D)⊂P6(R)
- nullity(D)=1
- basis:(1x°)
- rank(D)=7
- 7+1=8
4.
- 3':D2:P7(R)
- D2f=f
- W(D2)={ax+b: a,b∈R}=P1(R)
- nullity(D2)=2
- R(D2)=P5(R)
- rank (D2)=6
- 6+2=8
Theorem
(rank-nullity Theorem, a.k.a. dimension Theorem)
- nullity(T)+rank(T)=dim V
- (for a l.t. T:V→W) when V is F.d.
Proof
(To be continued next day)