09-240/Classnotes for Tuesday December 1
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
--- Wiki Format ---
MAT240 – December 1st
Basic Properties of det: Mnxn→F: 0 det(I) = 1
1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle det(E'_{i,j\,\!}A) = -det(A) ; |E'_{i,j\,\!}|= -1. [Note: det(EA) = |E||A|]}
- Also, note that exchanging two rows flips the sign.
2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle det(E^2_{i,c\,\!}A) = det(A) ; |E^2_{i,j,c\,\!}| = 1}
- These are "enough"!
3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle det((E_{i,j,c\,\!}A) = det(A) ; |E^3_{i,j,c\,\!}| = 1}
- Adding a multiple of one row to another does not change the determinant.
The determinant of any matrix can be calculated using the properties above.
Theorem:
If →F satisfies properties 0-3 above, then
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle det(A) = det'(A)}
Philosophical remark: Why not begin our inquiry with the properties above?
We must find an implied need for their use; thus, we must know whether a function Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle det} exists first.