09-240/Classnotes for Tuesday September 22

From Drorbn
Revision as of 16:46, 22 September 2009 by C8sd (talk | contribs) (→‎Proof of VS4: Incomplete examples, and food for thought)
Jump to navigationJump to search

Some links


WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting! Visit this pages' history tab to see who added what and when.

Class notes for today

Vectors:

  1. can be added
  2. can be multiplied by a number (not another vector)

Let [math]\displaystyle{ \mathcal F }[/math] be a field. A vector space [math]\displaystyle{ \mathbf V }[/math] over the field [math]\displaystyle{ \mathcal F }[/math] is a set [math]\displaystyle{ \mathbf V }[/math] (of vectors) with a special element [math]\displaystyle{ 0_V }[/math], a binary operation [math]\displaystyle{ + : \mathbf V \times \mathbf V \rightarrow \mathbf V }[/math], a binary operation [math]\displaystyle{ \cdot : \mathcal F \times \mathbf V \rightarrow \mathbf V }[/math].

Convention for today:
[math]\displaystyle{ x, y, z \in \mathbf V }[/math]
[math]\displaystyle{ a, b, c \in \mathcal F }[/math]

VS1 [math]\displaystyle{ \forall x, y \in \mathbf V, x + y = y + x }[/math]
VS2 [math]\displaystyle{ \cdots (x + y) + z = x + (y + z) }[/math]
VS3 [math]\displaystyle{ \cdots x + 0 = x }[/math]
VS4 [math]\displaystyle{ \forall x, \exists y \mbox{ s.t. } x + y = 0 }[/math]
VS5 [math]\displaystyle{ 1 \cdot x = x }[/math]
VS6 [math]\displaystyle{ a \cdot (b \cdot x) = (a \cdot b) \cdot x }[/math]
VS7 [math]\displaystyle{ a \cdot (x + y) = ax + ay }[/math]
VS8 [math]\displaystyle{ (a + b) \cdot x = ax + bx }[/math]

Proof of VS4

Take an arbitrary [math]\displaystyle{ x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in F^n }[/math]

Set [math]\displaystyle{ y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} }[/math] and note

[math]\displaystyle{ x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n} }[/math]

Examples

  1. [math]\displaystyle{ F^n \mbox{ for } n \in \mathbb N }[/math]
    [math]\displaystyle{ F^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} : a_i \in F \right\} }[/math]
    [math]\displaystyle{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix} }[/math]
    [math]\displaystyle{ a \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} ab_1 \\ ab_2 \\ \vdots \\ ab_n \end{pmatrix} }[/math]
    ...
  2. [math]\displaystyle{ \mathrm M_{m \times n}(F) }[/math]
    ...

Food for thought

What is wrong with setting

[math]\displaystyle{ \begin{pmatrix} 2 & 3 \\ 4 & 5 \\ \end{pmatrix} \cdot \begin{pmatrix} 6 & 7 \\ 8 & 9 \\ \end{pmatrix} = \begin{pmatrix} 2 \cdot 6 & 3 \cdot 7 \\ 4 \cdot 8 & 5 \cdot 9 \\ \end{pmatrix} = \begin{pmatrix} 12 & 21 \\ 32 & 45 \\ \end{pmatrix} ? }[/math]

  1. Unnecessary for a V.S.
  2. This is useless