Additions to the MAT 240 web site no longer count towards good deed points
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 7
|
Tue, About, Thu
|
2
|
Sep 14
|
Tue, HW1, HW1 Solution, Thu
|
3
|
Sep 21
|
Tue, HW2, HW2 Solution, Thu, Photo
|
4
|
Sep 28
|
Tue, HW3, HW3 Solution, Thu
|
5
|
Oct 5
|
Tue, HW4, HW4 Solution, Thu,
|
6
|
Oct 12
|
Tue, Thu
|
7
|
Oct 19
|
Tue, HW5, HW5 Solution, Term Test on Thu
|
8
|
Oct 26
|
Tue, Why LinAlg?, HW6, HW6 Solution, Thu
|
9
|
Nov 2
|
Tue, MIT LinAlg, Thu
|
10
|
Nov 9
|
Tue, HW7, HW7 Solution Thu
|
11
|
Nov 16
|
Tue, HW8, HW8 Solution, Thu
|
12
|
Nov 23
|
Tue, HW9, HW9 Solution, Thu
|
13
|
Nov 30
|
Tue, On the final, Thu
|
S
|
Dec 7
|
Office Hours
|
F
|
Dec 14
|
Final on Dec 16
|
To Do List
|
The Algebra Song!
|
Register of Good Deeds
|
Misplaced Material
|
Add your name / see who's in!
|
|
In Preparation
The information below is preliminary and cannot be trusted! (v)
Read appendices A through D in our textbook (with higher attention to C and D), and solve the following problems:
- Suppose and are nonzero elements of a field . Using only the field axioms, prove that is a multiplicative inverse of . State which axioms are used in your proof.
- Write the following complex numbers in the form , with :
- .
- .
-
- Prove that the set (endowed with the addition and multiplication inherited from ) is a field.
- Is the set (with the same addition and multiplication) also a field?
- Let be a field containing 4 elements. Assume that . Prove that . (Hint: For example, for the first equality, show that cannot equal , , or .)
This assignment is due at the tutorials on Thursday September 24. Here and everywhere, neatness counts!! You may be brilliant and you may mean just the right things, but if the teaching assistants will be having hard time deciphering your work they will give up and assume it is wrong.