09-240/Classnotes for Tuesday December 1: Difference between revisions
No edit summary |
(Uploaded PDF for Dec 1st and created a gallery.) |
||
| Line 1: | Line 1: | ||
{{09-240/Navigation}} |
{{09-240/Navigation}} |
||
<gallery> |
|||
Image:ALA240-2009_-_December_1st.pdf|A complete set of the December 1st lecture notes given by Professor Dror Bar-Natan for the Fall Session of MAT240 at the University of Toronto. |
|||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
</gallery> |
|||
In the above gallery, there is a complete copy of notes for the lecture given on December 1st by Professor Natan (in PDF format). |
|||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
--- Wiki Format --- |
--- Wiki Format --- |
||
Revision as of 23:05, 4 December 2009
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In the above gallery, there is a complete copy of notes for the lecture given on December 1st by Professor Natan (in PDF format).
--- Wiki Format ---
MAT240 – December 1st
Basic Properties of det: Mnxn→F: 0 det(I) = 1
1. [math]\displaystyle{ det(E'_{i,j\,\!}A) = -det(A) ; |E'_{i,j\,\!}|= -1. [Note: det(EA) = |E||A|] }[/math]
- Also, note that exchanging two rows flips the sign.
2. [math]\displaystyle{ det(E^2_{i,c\,\!}A) = det(A) ; |E^2_{i,j,c\,\!}| = 1 }[/math]
- These are "enough"!
3. [math]\displaystyle{ det((E_{i,j,c\,\!}A) = det(A) ; |E^3_{i,j,c\,\!}| = 1 }[/math]
- Adding a multiple of one row to another does not change the determinant.
The determinant of any matrix can be calculated using the properties above.
Theorem:
If [math]\displaystyle{ det' : M_{nxn\,\!} }[/math]→F satisfies properties 0-3 above, then [math]\displaystyle{ det' = det }[/math]
[math]\displaystyle{ det(A) = det'(A) }[/math]
Philosophical remark: Why not begin our inquiry with the properties above?
We must find an implied need for their use; thus, we must know whether a function [math]\displaystyle{ det }[/math] exists first.