|
|
Line 23: |
Line 23: |
|
• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers |
|
• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers |
|
|
|
|
|
• Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math>
|
|
Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math> |
|
|
|
|
|
'''Implications:''' |
|
'''Implications:''' |
Line 35: |
Line 35: |
|
• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math> |
|
• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math> |
|
|
|
|
|
• <math>=(a+c)+(bi+di)</math>
|
|
:<math>=(a+c)+(bi+di)</math> |
|
|
|
|
|
• <math>=(a+c)+(b+d)i</math>
|
|
:<math>=(a+c)+(b+d)i</math> |
|
|
|
|
|
• <math>=e+fi</math>
|
|
:<math>=e+fi</math> |
|
|
|
|
|
• <math>(a+bi)(c+di)=(a+c)+(b+d)i</math>
|
|
<math>(a+bi)(c+di)=(a+c)+(b+d)i</math> |
|
|
|
|
|
• <math>=a(c+di)+bi(c+di)</math>
|
|
:<math>=a(c+di)+bi(c+di)</math> |
|
|
|
|
|
• <math>=ac+adi+bic+bidi</math>
|
|
:<math>=ac+adi+bic+bidi</math> |
|
|
|
|
|
• <math>=ac+bdi^2 + adi+bci</math>
|
|
:<math>=ac+bdi^2 + adi+bci</math> |
|
|
|
|
|
• <math>=(ac-bd)+(ad+bc)i</math>
|
|
:<math>=(ac-bd)+(ad+bc)i</math> |
|
|
|
|
|
• <math>=e+fi</math>
|
|
:<math>=e+fi</math> |
|
|
|
|
|
• <math>0_C=0+0i</math>
|
|
:<math>0_C=0+0i</math> |
|
|
|
|
|
• <math>1_C=1+0i</math>
|
|
:<math>1_C=1+0i</math> |
|
|
|
|
|
• <math>(a+bi)+(c+di)=0+0i</math>
|
|
:<math>(a+bi)+(c+di)=0+0i</math> |
|
|
|
|
|
• <math>-(a+bi)=(-a)+(-b)i</math>
|
|
:<math>-(a+bi)=(-a)+(-b)i</math> |
|
|
|
|
|
• <math>a+bi \neq 0 \Rightarrow (a,b) \neq 0</math>
|
|
:<math>a+bi \neq 0 \Rightarrow (a,b) \neq 0</math> |
|
|
|
|
|
• Find another element of <math>\mathbb C</math>, <math>x+yi</math> such that <math>(a+bi)(x+yi)=(1+0i)</math> |
|
• Find another element of <math>\mathbb C</math>, <math>x+yi</math> such that <math>(a+bi)(x+yi)=(1+0i)</math> |
|
|
|
|
|
• <math>(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i</math>
|
|
:<math>(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i</math> |
|
|
|
|
|
• <math>ax-by=1</math> (1)
|
|
:<math>ax-by=1</math> (1) |
|
|
|
|
|
• <math>bx+ay=0</math> (2)
|
|
:<math>bx+ay=0</math> (2) |
|
|
|
|
|
• <math>a,b</math> are given
|
|
:<math>a,b</math> are given |
|
|
|
|
|
• <math>x,y</math> unknowns
|
|
:<math>x,y</math> unknowns |
|
|
|
|
|
• <math>b \times (1)</math> <math>abx-b^2y=b</math> |
|
• <math>b \times (1)</math> <math>abx-b^2y=b</math> |
Line 79: |
Line 79: |
|
• <math>a \times (2)</math> <math>abx+a^2y=0</math> |
|
• <math>a \times (2)</math> <math>abx+a^2y=0</math> |
|
|
|
|
|
• <math>\Rightarrow a^{2}y+b^{2}y=-b</math>
|
|
:<math>\Rightarrow a^{2}y+b^{2}y=-b</math> |
|
|
|
|
|
• <math>y=\frac{-b}{a^{2}+b^{2}}</math>
|
|
:<math>y=\frac{-b}{a^{2}+b^{2}}</math> |
|
|
|
|
|
• <math>x=\frac{a}{a^{2}+b^{2}}</math>
|
|
:<math>x=\frac{a}{a^{2}+b^{2}}</math> |
|
|
|
|
|
• (Note: We can divide since we assumed that <math>(a,b) \neq 0</math> |
|
• (Note: We can divide since we assumed that <math>(a,b) \neq 0</math> |
|
|
|
|
|
• <math>(a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }}</math>
|
|
:<math>(a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }}</math> |
|
|
|
|
|
• Def: Let <math>\mathbb C</math> be the set of all pairs of real numbers <math>{(a,b)}={a+bi}</math>
|
|
Def: Let <math>\mathbb C</math> be the set of all pairs of real numbers <math>{(a,b)}={a+bi}</math> |
|
|
|
|
|
• with <math>+: (a,b)+(c,d)=(a+c,b+d)</math>
|
|
with <math>+: (a,b)+(c,d)=(a+c,b+d)</math> |
|
|
|
|
|
• <math>(a+bi)+(c+di)=(a+c)+(b+d)i</math>
|
|
:<math>(a+bi)+(c+di)=(a+c)+(b+d)i</math> |
|
|
|
|
|
• <math>x:(a+bi)(c+di)=</math>...you know what
|
|
<math>\times :(a+bi)(c+di)=</math>...you know what |
|
|
|
|
|
• 0 = you know what |
|
• 0 = you know what |
Line 101: |
Line 101: |
|
• 1 = you know what |
|
• 1 = you know what |
|
|
|
|
|
|
'''Theorem:''' |
|
• Thm: |
|
|
|
|
|
|
• 1. <math>\mathbb C</math> is a field
|
|
#:<math>\mathbb C</math> is a field |
|
|
|
|
|
• 2. <math>(0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0)</math>
|
|
#:<math>(0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0)</math> |
|
|
|
|
|
• 3. <math>\mathbb R \rightarrow \mathbb C</math> by <math>a \rightarrow a+0i</math>
|
|
#:<math>\mathbb R \rightarrow \mathbb C</math> by <math>a \rightarrow a+0i</math> |
|
|
|
|
|
• Proof: <math>F_{1},F_{2},F_{3},...</math>
|
|
Proof: <math>F_{1},F_{2},F_{3},...</math> |
|
|
|
|
|
• Example: <math>F_{5}</math> (distributivity)
|
|
'''Example:''' <math>F_{5}</math> (distributivity) |
|
|
|
|
|
• Show that <math>z(u+v)=zu+zv</math> |
|
• Show that <math>z(u+v)=zu+zv</math> |
|
|
|
|
|
• Let <math>z=(a+bi)</math>
|
|
Let <math>z=(a+bi)</math> |
|
|
|
|
|
• <math>u=(c+di)</math>
|
|
:<math>u=(c+di)</math> |
|
|
|
|
|
• <math>v=(e+fi)</math>
|
|
:<math>v=(e+fi)</math> |
|
|
|
|
|
• When <math>a,b,c,d,e,f \in \mathbb R</math>
|
|
When <math>a,b,c,d,e,f \in \mathbb R</math> |
|
|
|
|
|
• <math>(a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots</math>
|
|
:<math>(a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots</math> |
|
|
|
|
|
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves) |
|
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves) |
Additions to the MAT 240 web site no longer count towards good deed points
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 7
|
Tue, About, Thu
|
2
|
Sep 14
|
Tue, HW1, HW1 Solution, Thu
|
3
|
Sep 21
|
Tue, HW2, HW2 Solution, Thu, Photo
|
4
|
Sep 28
|
Tue, HW3, HW3 Solution, Thu
|
5
|
Oct 5
|
Tue, HW4, HW4 Solution, Thu,
|
6
|
Oct 12
|
Tue, Thu
|
7
|
Oct 19
|
Tue, HW5, HW5 Solution, Term Test on Thu
|
8
|
Oct 26
|
Tue, Why LinAlg?, HW6, HW6 Solution, Thu
|
9
|
Nov 2
|
Tue, MIT LinAlg, Thu
|
10
|
Nov 9
|
Tue, HW7, HW7 Solution Thu
|
11
|
Nov 16
|
Tue, HW8, HW8 Solution, Thu
|
12
|
Nov 23
|
Tue, HW9, HW9 Solution, Thu
|
13
|
Nov 30
|
Tue, On the final, Thu
|
S
|
Dec 7
|
Office Hours
|
F
|
Dec 14
|
Final on Dec 16
|
To Do List
|
The Algebra Song!
|
Register of Good Deeds
|
Misplaced Material
|
Add your name / see who's in!
|
|
NSERC - CMS Math in Moscow Scholarships
The Natural Sciences and Engineering Research Council (NSERC) and the Canadian Mathematical Society (CMS) support scholarships at $9,000 each. Canadian students registered in a mathematics or computer science program are eligible.
The scholarships are to attend a semester at the small elite Moscow Independent University.
Math in Moscow Program http://www.mccme.ru/mathinmoscow/
Application details http://www.cms.math.ca/Scholarships/Moscow
For additional information please see your department or call the CMS at 613-733-2662.
Deadline September 30, 2009 to attend the Winter 2010 semester.
Some links
Class notes for today
• Convention for today: will be real numbers; will be complex numbers
Dream: Find a field that contains and also contains an element such that
Implications:
•
•
•
• must be in
• Find another element of , such that
- (1)
- (2)
- are given
- unknowns
•
•
• (Note: We can divide since we assumed that
Def: Let be the set of all pairs of real numbers
with
...you know what
• 0 = you know what
• 1 = you know what
Theorem:
- is a field
- by
Proof:
Example: (distributivity)
• Show that
Let
When
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves)