09-240/Classnotes for Thursday September 17: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 18: Line 18:
* Dori Eldar's work on "mechanical computations": {{Home Link|People/Eldar/thesis/linkfunc.htm|Machines as Calculating Devices}} and {{Home Link|People/Eldar/thesis/squaring.htm|Computing the function <math>W=Z^2</math> the hard way}}.
* Dori Eldar's work on "mechanical computations": {{Home Link|People/Eldar/thesis/linkfunc.htm|Machines as Calculating Devices}} and {{Home Link|People/Eldar/thesis/squaring.htm|Computing the function <math>W=Z^2</math> the hard way}}.
* The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5".
* The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5".

==Class notes for today==

• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers

• Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math>

'''Implications:'''

• <math>b \in \mathbb R \Rightarrow bi \in \mathbb C</math>

• <math>a \in \mathbb R \Rightarrow a+bi \in \mathbb C</math>

• <math>c,d \in \mathbb R \Rightarrow c+di \in \mathbb C</math>

• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math>

• <math>= (a+c)+(bi+di)</math>

• <math>= (a+c)+(b+d)i</math>

• <math>=e+fi</math>

• <math>(a+bi)(c+di)=(a+c)+(b+d)i</math>

• <math>= a(c+di)+bi(c+di)</math>

• <math>=ac+adi+bic+bidi</math>

• <math>=ac+bdi^2 + adi+bci</math>

• <math>=(ac-bd)+(ad+bc)i</math>

• <math>=e+fi</math>

• <math>0_C=0+0i</math>

• <math>1_C=1+0i</math>

• <math>(a+bi)+(c+di)=0+0i</math>

(rest of notes will be added in 1/2-hour)

Revision as of 16:59, 17 September 2009

NSERC - CMS Math in Moscow Scholarships

The Natural Sciences and Engineering Research Council (NSERC) and the Canadian Mathematical Society (CMS) support scholarships at $9,000 each. Canadian students registered in a mathematics or computer science program are eligible.

The scholarships are to attend a semester at the small elite Moscow Independent University.

Math in Moscow Program http://www.mccme.ru/mathinmoscow/

Application details http://www.cms.math.ca/Scholarships/Moscow

For additional information please see your department or call the CMS at 613-733-2662.

Deadline September 30, 2009 to attend the Winter 2010 semester.

Some links

Class notes for today

• Convention for today: will be real numbers; will be complex numbers

• Dream: Find a field that contains and also contains an element such that

Implications:

must be in

(rest of notes will be added in 1/2-hour)