09-240/Classnotes for Tuesday September 22: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
(→‎Class notes for today: Add vector section before examples.)
Line 9: Line 9:
{{09-240/Class Notes Warning}}
{{09-240/Class Notes Warning}}
==Class notes for today==
==Class notes for today==

Vectors:
# can be added
# can be multiplied by a number (not another vector)

Let <math>\mathcal F</math> be a field. A vector space <math>\mathbf V</math> over the field <math>\mathcal F</math> is a set <math>\mathbf V</math> (of vectors) with a special element <math>0_V</math>, a binary operation <math>+ : \mathbf V \times \mathbf V \rightarrow \mathbf V</math>, a binary operation <math>\cdot : \mathcal F \times \mathbf V \rightarrow \mathbf V</math>.

{| style="border: solid 1px black"
|-
| Convention for today:
: <math>x, y, z \in \mathbf V</math>
: <math>a, b, c \in \mathcal F</math>
|}

VS1 <math>\forall x, y \in \mathbf V, x + y = y + x</math><br />
VS2 <math>\cdots (x + y) + z = x + (y + z)</math><br />
VS3 <math>\cdots x + 0 = x</math><br />
VS4 <math>\forall x, \exists y \mbox{ s.t. } x + y = 0</math><br />
VS5 <math>1 \cdot x = x</math><br />
VS6 <math>a \cdot (b \cdot x) = (a \cdot b) \cdot x</math><br />
VS7 <math>a \cdot (x + y) = ax + ay</math><br />
VS8 <math>(a + b) \cdot x = ax + bx</math>

=== Proof of VS4 ===

Take an arbitrary <math>x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in F^n</math>

Set <math>y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix}</math> and note
: <math>x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n}</math>

Revision as of 16:24, 22 September 2009

Some links


WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting! Visit this pages' history tab to see who added what and when.

Class notes for today

Vectors:

  1. can be added
  2. can be multiplied by a number (not another vector)

Let be a field. A vector space over the field is a set (of vectors) with a special element , a binary operation , a binary operation .

Convention for today:

VS1
VS2
VS3
VS4
VS5
VS6
VS7
VS8

Proof of VS4

Take an arbitrary

Set and note