|
|
(One intermediate revision by one other user not shown) |
Line 19: |
Line 19: |
|
* The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5". |
|
* The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5". |
|
|
|
|
|
|
|
|
|
{{09-240/Class Notes Warning}} |
|
==Class notes for today== |
|
==Class notes for today== |
|
|
|
|
|
• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers |
|
• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers |
|
|
|
|
|
• Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math>
|
|
Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math> |
|
|
|
|
|
'''Implications:''' |
|
'''Implications:''' |
Line 35: |
Line 37: |
|
• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math> |
|
• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math> |
|
|
|
|
|
• <math>=(a+c)+(bi+di)</math>
|
|
:<math>=(a+c)+(bi+di)</math> |
|
|
|
|
|
• <math>=(a+c)+(b+d)i</math>
|
|
:<math>=(a+c)+(b+d)i</math> |
|
|
|
|
|
• <math>=e+fi</math>
|
|
:<math>=e+fi</math> |
|
|
|
|
|
• <math>(a+bi)(c+di)=(a+c)+(b+d)i</math>
|
|
<math>(a+bi)(c+di)=(a+c)+(b+d)i</math> |
|
|
|
|
|
• <math>=a(c+di)+bi(c+di)</math>
|
|
:<math>=a(c+di)+bi(c+di)</math> |
|
|
|
|
|
• <math>=ac+adi+bic+bidi</math>
|
|
:<math>=ac+adi+bic+bidi</math> |
|
|
|
|
|
• <math>=ac+bdi^2 + adi+bci</math>
|
|
:<math>=ac+bdi^2 + adi+bci</math> |
|
|
|
|
|
• <math>=(ac-bd)+(ad+bc)i</math>
|
|
:<math>=(ac-bd)+(ad+bc)i</math> |
|
|
|
|
|
• <math>=e+fi</math>
|
|
:<math>=e+fi</math> |
|
|
|
|
|
• <math>0_C=0+0i</math>
|
|
:<math>0_C=0+0i</math> |
|
|
|
|
|
• <math>1_C=1+0i</math>
|
|
:<math>1_C=1+0i</math> |
|
|
|
|
|
• <math>(a+bi)+(c+di)=0+0i</math>
|
|
:<math>(a+bi)+(c+di)=0+0i</math> |
|
|
|
|
|
• <math>-(a+bi)=(-a)+(-b)i</math>
|
|
:<math>-(a+bi)=(-a)+(-b)i</math> |
|
|
|
|
|
• <math>a+bi \neq 0 \Rightarrow (a,b) \neq 0</math>
|
|
:<math>a+bi \neq 0 \Rightarrow (a,b) \neq 0</math> |
|
|
|
|
|
• Find another element of <math>\mathbb C</math>, <math>x+yi</math> such that <math>(a+bi)(x+yi)=(1+0i)</math> |
|
• Find another element of <math>\mathbb C</math>, <math>x+yi</math> such that <math>(a+bi)(x+yi)=(1+0i)</math> |
|
|
|
|
|
• <math>(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i</math>
|
|
:<math>(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i</math> |
|
|
|
|
|
• <math>ax-by=1</math> (1)
|
|
:<math>ax-by=1</math> (1) |
|
|
|
|
|
• <math>bx+ay=0</math> (2)
|
|
:<math>bx+ay=0</math> (2) |
|
|
|
|
|
• <math>a,b</math> are given
|
|
:<math>a,b</math> are given |
|
|
|
|
|
• <math>x,y</math> unknowns
|
|
:<math>x,y</math> unknowns |
|
|
|
|
|
• <math>b \times (1)</math> <math>abx-b^2y=b</math> |
|
• <math>b \times (1)</math> <math>abx-b^2y=b</math> |
Line 79: |
Line 81: |
|
• <math>a \times (2)</math> <math>abx+a^2y=0</math> |
|
• <math>a \times (2)</math> <math>abx+a^2y=0</math> |
|
|
|
|
|
• <math>\Rightarrow a^{2}y+b^{2}y=-b</math>
|
|
:<math>\Rightarrow a^{2}y+b^{2}y=-b</math> |
|
|
|
|
|
• <math>y=\frac{-b}{a^{2}+b^{2}}</math>
|
|
:<math>y=\frac{-b}{a^{2}+b^{2}}</math> |
|
|
|
|
|
• <math>x=\frac{a}{a^{2}+b^{2}}</math>
|
|
:<math>x=\frac{a}{a^{2}+b^{2}}</math> |
|
|
|
|
|
• (Note: We can divide since we assumed that <math>(a,b) \neq 0</math> |
|
• (Note: We can divide since we assumed that <math>(a,b) \neq 0</math> |
|
|
|
|
|
• <math>(a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }}</math>
|
|
:<math>(a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }}</math> |
|
|
|
|
|
• Def: Let <math>\mathbb C</math> be the set of all pairs of real numbers <math>{(a,b)}={a+bi}</math>
|
|
Def: Let <math>\mathbb C</math> be the set of all pairs of real numbers <math>{(a,b)}={a+bi}</math> |
|
|
|
|
|
• with <math>+: (a,b)+(c,d)=(a+c,b+d)</math>
|
|
with <math>+: (a,b)+(c,d)=(a+c,b+d)</math> |
|
|
|
|
|
• <math>(a+bi)+(c+di)=(a+c)+(b+d)i</math>
|
|
:<math>(a+bi)+(c+di)=(a+c)+(b+d)i</math> |
|
|
|
|
|
• <math>x:(a+bi)(c+di)=</math>...you know what
|
|
<math>\times :(a+bi)(c+di)=</math>...you know what |
|
|
|
|
|
• 0 = you know what |
|
• 0 = you know what |
Line 101: |
Line 103: |
|
• 1 = you know what |
|
• 1 = you know what |
|
|
|
|
|
|
'''Theorem:''' |
|
• Thm: |
|
|
|
|
|
|
• 1. <math>\mathbb C</math> is a field
|
|
#:<math>\mathbb C</math> is a field |
|
|
|
|
|
• 2. <math>(0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0)</math>
|
|
#:<math>(0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0)</math> |
|
|
|
|
|
• 3. <math>\mathbb R \rightarrow \mathbb C</math> by <math>a \rightarrow a+0i</math>
|
|
#:<math>\mathbb R \rightarrow \mathbb C</math> by <math>a \rightarrow a+0i</math> |
|
|
|
|
|
• Proof: <math>F_{1},F_{2},F_{3},...</math>
|
|
Proof: <math>F_{1},F_{2},F_{3},...</math> |
|
|
|
|
|
• Example: <math>F_{5}</math> (distributivity)
|
|
'''Example:''' <math>F_{5}</math> (distributivity) |
|
|
|
|
|
• Show that <math>z(u+v)=zu+zv</math> |
|
• Show that <math>z(u+v)=zu+zv</math> |
|
|
|
|
|
• Let <math>z=(a+bi)</math>
|
|
Let <math>z=(a+bi)</math> |
|
|
|
|
|
• <math>u=(c+di)</math>
|
|
:<math>u=(c+di)</math> |
|
|
|
|
|
• <math>v=(e+fi)</math>
|
|
:<math>v=(e+fi)</math> |
|
|
|
|
|
• When <math>a,b,c,d,e,f \in \mathbb R</math>
|
|
When <math>a,b,c,d,e,f \in \mathbb R</math> |
|
|
|
|
|
• <math>(a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots</math>
|
|
:<math>(a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots</math> |
|
|
|
|
|
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves) |
|
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves) |
Additions to the MAT 240 web site no longer count towards good deed points
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 7
|
Tue, About, Thu
|
2
|
Sep 14
|
Tue, HW1, HW1 Solution, Thu
|
3
|
Sep 21
|
Tue, HW2, HW2 Solution, Thu, Photo
|
4
|
Sep 28
|
Tue, HW3, HW3 Solution, Thu
|
5
|
Oct 5
|
Tue, HW4, HW4 Solution, Thu,
|
6
|
Oct 12
|
Tue, Thu
|
7
|
Oct 19
|
Tue, HW5, HW5 Solution, Term Test on Thu
|
8
|
Oct 26
|
Tue, Why LinAlg?, HW6, HW6 Solution, Thu
|
9
|
Nov 2
|
Tue, MIT LinAlg, Thu
|
10
|
Nov 9
|
Tue, HW7, HW7 Solution Thu
|
11
|
Nov 16
|
Tue, HW8, HW8 Solution, Thu
|
12
|
Nov 23
|
Tue, HW9, HW9 Solution, Thu
|
13
|
Nov 30
|
Tue, On the final, Thu
|
S
|
Dec 7
|
Office Hours
|
F
|
Dec 14
|
Final on Dec 16
|
To Do List
|
The Algebra Song!
|
Register of Good Deeds
|
Misplaced Material
|
Add your name / see who's in!
|
|
NSERC - CMS Math in Moscow Scholarships
The Natural Sciences and Engineering Research Council (NSERC) and the Canadian Mathematical Society (CMS) support scholarships at $9,000 each. Canadian students registered in a mathematics or computer science program are eligible.
The scholarships are to attend a semester at the small elite Moscow Independent University.
Math in Moscow Program http://www.mccme.ru/mathinmoscow/
Application details http://www.cms.math.ca/Scholarships/Moscow
For additional information please see your department or call the CMS at 613-733-2662.
Deadline September 30, 2009 to attend the Winter 2010 semester.
Some links
WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting!
Visit this pages' history tab to see who added what and when.
Class notes for today
• Convention for today: will be real numbers; will be complex numbers
Dream: Find a field that contains and also contains an element such that
Implications:
•
•
•
• must be in
• Find another element of , such that
- (1)
- (2)
- are given
- unknowns
•
•
• (Note: We can divide since we assumed that
Def: Let be the set of all pairs of real numbers
with
...you know what
• 0 = you know what
• 1 = you know what
Theorem:
- is a field
- by
Proof:
Example: (distributivity)
• Show that
Let
When
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves)