09-240/Classnotes for Thursday September 17: Difference between revisions
No edit summary |
No edit summary |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{09-240/Navigation}} |
{{09-240/Navigation}} |
||
==NSERC - CMS Math in Moscow Scholarships== |
|||
==Some links== |
|||
The Natural Sciences and Engineering Research Council (NSERC) and the Canadian Mathematical Society (CMS) support scholarships at $9,000 each. Canadian students registered in a mathematics or computer science program are eligible. |
|||
The scholarships are to attend a semester at the small elite Moscow Independent University. |
|||
Math in Moscow Program http://www.mccme.ru/mathinmoscow/ |
|||
Application details http://www.cms.math.ca/Scholarships/Moscow |
|||
For additional information please see your department or call the CMS at 613-733-2662. |
|||
Deadline September 30, 2009 to attend the Winter 2010 semester. |
|||
==Some links== |
|||
* Dori Eldar's work on "mechanical computations": {{Home Link|People/Eldar/thesis/linkfunc.htm|Machines as Calculating Devices}} and {{Home Link|People/Eldar/thesis/squaring.htm|Computing the function <math>W=Z^2</math> the hard way}}. |
* Dori Eldar's work on "mechanical computations": {{Home Link|People/Eldar/thesis/linkfunc.htm|Machines as Calculating Devices}} and {{Home Link|People/Eldar/thesis/squaring.htm|Computing the function <math>W=Z^2</math> the hard way}}. |
||
* The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5". |
* The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5". |
||
{{09-240/Class Notes Warning}} |
|||
==Class notes for today== |
|||
• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers |
|||
Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math> |
|||
'''Implications:''' |
|||
• <math>b \in \mathbb R \Rightarrow bi \in \mathbb C</math> |
|||
• <math>a \in \mathbb R \Rightarrow a+bi \in \mathbb C</math> |
|||
• <math>c,d \in \mathbb R \Rightarrow c+di \in \mathbb C</math> |
|||
• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math> |
|||
:<math>=(a+c)+(bi+di)</math> |
|||
:<math>=(a+c)+(b+d)i</math> |
|||
:<math>=e+fi</math> |
|||
<math>(a+bi)(c+di)=(a+c)+(b+d)i</math> |
|||
:<math>=a(c+di)+bi(c+di)</math> |
|||
:<math>=ac+adi+bic+bidi</math> |
|||
:<math>=ac+bdi^2 + adi+bci</math> |
|||
:<math>=(ac-bd)+(ad+bc)i</math> |
|||
:<math>=e+fi</math> |
|||
:<math>0_C=0+0i</math> |
|||
:<math>1_C=1+0i</math> |
|||
:<math>(a+bi)+(c+di)=0+0i</math> |
|||
:<math>-(a+bi)=(-a)+(-b)i</math> |
|||
:<math>a+bi \neq 0 \Rightarrow (a,b) \neq 0</math> |
|||
• Find another element of <math>\mathbb C</math>, <math>x+yi</math> such that <math>(a+bi)(x+yi)=(1+0i)</math> |
|||
:<math>(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i</math> |
|||
:<math>ax-by=1</math> (1) |
|||
:<math>bx+ay=0</math> (2) |
|||
:<math>a,b</math> are given |
|||
:<math>x,y</math> unknowns |
|||
• <math>b \times (1)</math> <math>abx-b^2y=b</math> |
|||
• <math>a \times (2)</math> <math>abx+a^2y=0</math> |
|||
:<math>\Rightarrow a^{2}y+b^{2}y=-b</math> |
|||
:<math>y=\frac{-b}{a^{2}+b^{2}}</math> |
|||
:<math>x=\frac{a}{a^{2}+b^{2}}</math> |
|||
• (Note: We can divide since we assumed that <math>(a,b) \neq 0</math> |
|||
:<math>(a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }}</math> |
|||
Def: Let <math>\mathbb C</math> be the set of all pairs of real numbers <math>{(a,b)}={a+bi}</math> |
|||
with <math>+: (a,b)+(c,d)=(a+c,b+d)</math> |
|||
:<math>(a+bi)+(c+di)=(a+c)+(b+d)i</math> |
|||
<math>\times :(a+bi)(c+di)=</math>...you know what |
|||
• 0 = you know what |
|||
• 1 = you know what |
|||
'''Theorem:''' |
|||
#:<math>\mathbb C</math> is a field |
|||
#:<math>(0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0)</math> |
|||
#:<math>\mathbb R \rightarrow \mathbb C</math> by <math>a \rightarrow a+0i</math> |
|||
Proof: <math>F_{1},F_{2},F_{3},...</math> |
|||
'''Example:''' <math>F_{5}</math> (distributivity) |
|||
• Show that <math>z(u+v)=zu+zv</math> |
|||
Let <math>z=(a+bi)</math> |
|||
:<math>u=(c+di)</math> |
|||
:<math>v=(e+fi)</math> |
|||
When <math>a,b,c,d,e,f \in \mathbb R</math> |
|||
:<math>(a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots</math> |
|||
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves) |
Latest revision as of 19:15, 17 September 2009
|
NSERC - CMS Math in Moscow Scholarships
The Natural Sciences and Engineering Research Council (NSERC) and the Canadian Mathematical Society (CMS) support scholarships at $9,000 each. Canadian students registered in a mathematics or computer science program are eligible.
The scholarships are to attend a semester at the small elite Moscow Independent University.
Math in Moscow Program http://www.mccme.ru/mathinmoscow/
Application details http://www.cms.math.ca/Scholarships/Moscow
For additional information please see your department or call the CMS at 613-733-2662.
Deadline September 30, 2009 to attend the Winter 2010 semester.
Some links
- Dori Eldar's work on "mechanical computations": Machines as Calculating Devices and Computing the function the hard way.
- The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5".
Class notes for today
• Convention for today: will be real numbers; will be complex numbers
Dream: Find a field that contains and also contains an element such that
Implications:
•
•
•
• must be in
• Find another element of , such that
- (1)
- (2)
- are given
- unknowns
•
•
• (Note: We can divide since we assumed that
Def: Let be the set of all pairs of real numbers
with
...you know what
• 0 = you know what
• 1 = you know what
Theorem:
- is a field
- by
Proof:
Example: (distributivity)
• Show that
Let
When
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves)