09-240/Classnotes for Tuesday September 15: Difference between revisions
(→Tedious Theorem: 3 to 12) |
m (Update file caption) |
||
(28 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
{{09-240/Navigation}} |
|||
{{09-240/Class Notes Warning}} |
|||
<gallery> |
<gallery> |
||
Image:09-240 Classnotes for Tuesday September 15 2009 page 1.jpg|Page 1 |
Image:09-240 Classnotes for Tuesday September 15 2009 page 1.jpg|[[User:Yangjiay|Yangjiay]] - Page 1 |
||
Image:09-240 Classnotes for Tuesday September 15 2009 page 2.jpg|Page 2 |
Image:09-240 Classnotes for Tuesday September 15 2009 page 2.jpg|Page 2 |
||
Image:09-240 Classnotes for Tuesday September 15 2009 page 3.jpg|Page 3 |
Image:09-240 Classnotes for Tuesday September 15 2009 page 3.jpg|Page 3 |
||
Image:09-240 Classnotes for Tuesday September 15 2009 page 4.jpg|Page 4 |
Image:09-240 Classnotes for Tuesday September 15 2009 page 4.jpg|Page 4 |
||
Image:09-240 Classnotes for Tuesday September 15 2009 page 5.jpg|Page 5 |
Image:09-240 Classnotes for Tuesday September 15 2009 page 5.jpg|Page 5 |
||
Image:ALA240-2009_-_September_15th.pdf|A complete copy of notes for the lecture given on September 15th by Professor Natan (in PDF format) |
|||
</gallery> |
</gallery> |
||
(In the above gallery, there is a complete set of notes for the lecture given by Professor Natan on September 15th in PDF form.) |
|||
The real numbers A set <math>\mathbb R</math> with two binary operators and two special elements <math>0, 1 \in \mathbb R</math> s.t. |
The real numbers A set <math>\mathbb R</math> with two binary operators and two special elements <math>0, 1 \in \mathbb R</math> s.t. |
||
Line 12: | Line 17: | ||
: <math>F2.\quad \forall a, b, c, (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math> |
: <math>F2.\quad \forall a, b, c, (a + b) + c = a + (b + c) \mbox{ and } (a \cdot b) \cdot c = a \cdot (b \cdot c)</math> |
||
: <math>\mbox{(So for any real numbers } a_1, a_2, ..., a_n, \mbox{ one can sum them in any order and achieve the same result.}</math> |
: <math>\mbox{(So for any real numbers } a_1, a_2, ..., a_n, \mbox{ one can sum them in any order and achieve the same result.}</math> |
||
: <math>F3.\quad \forall a, a + 0 = a |
: <math>F3.\quad \forall a, a + 0 = a \mbox{ and } a \cdot 1 = a</math> |
||
: <math>F4.\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math> |
: <math>F4.\quad \forall a, \exists b, a + b = 0 \mbox{ and } \forall a \ne 0, \exists b, a \cdot b = 1</math> |
||
: <math>\mbox{So } a + (-a) = 0 \mbox{ and } a \cdot a^{-1} = 1</math> |
: <math>\mbox{So } a + (-a) = 0 \mbox{ and } a \cdot a^{-1} = 1</math> |
||
Line 109: | Line 114: | ||
|- |
|- |
||
! 1 |
! 1 |
||
| 0 || 1 || 2 || 3 || 4 || 5 || |
| 0 || 1 || 2 || 3 || 4 || 5 || 6 |
||
|- |
|- |
||
! 2 |
! 2 |
||
| 0 || 2 || 4 || 6 || 1 || 3 || |
| 0 || 2 || 4 || 6 || 1 || 3 || 5 |
||
|- |
|- |
||
! 3 |
! 3 |
||
| 0 || 3 || 6 || 2 || 5 || 1 || |
| 0 || 3 || 6 || 2 || 5 || 1 || 4 |
||
|- |
|- |
||
! 4 |
! 4 |
||
Line 121: | Line 126: | ||
|- |
|- |
||
! 5 |
! 5 |
||
| 0 || 5 || 3 || 1 || 6 || 4 || |
| 0 || 5 || 3 || 1 || 6 || 4 || 2 |
||
|- |
|- |
||
! 6 |
! 6 |
||
| 0 || 6 || 5 || 4 || 3 || 2 || |
| 0 || 6 || 5 || 4 || 3 || 2 || 1 |
||
|} |
|} |
||
|} |
|} |
||
'''Theorem''': ''F''<sub>2</sub> is a field. |
|||
⚫ | |||
In order to prove that the associative property holds, make a table (similar to a [http://en.wikipedia.org/wiki/Truth_table truth table]) for ''a'', ''b'' and ''c''. |
|||
{| border="1" cellspacing="0" style="text-align: center;" |
|||
! a !! b !! c !! |
|||
|- |
|||
| 0 || 0 || 0 || |
|||
|- |
|||
| 0 || 0 || 1 || |
|||
|- |
|||
| 0 || 1 || 0 || |
|||
|- |
|||
| 0 || 1 || 1 || (0 + 1) + 1 =<sup>?</sup> 0 + (1 + 1)<br />1 + 1 =<sup>?</sup> 0 + 0<br />0 = 0 |
|||
|- |
|||
| 1 || 0 || 0 || |
|||
|- |
|||
| 1 || 0 || 1 || |
|||
|- |
|||
| 1 || 1 || 0 || |
|||
|- |
|||
| 1 || 1 || 1 || |
|||
|} |
|||
⚫ | |||
<u>Proof</u>: |
|||
<math>a \in \mathbb Z</math> has a multiplicative inverse modulo <math>m</math> if and only if a and m are relatively prime. |
|||
This can be shown using [http://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity Bézout's identity]: |
|||
: <math>\exists x, y \mbox{ s.t. } ax + my = 1</math> |
|||
: <math>\left(ax + my\right) \pmod{m} = 1\pmod{m}</math> |
|||
⚫ | |||
: <math>x = a^{-1}</math> |
|||
We have shown that <math>a</math> has a multiplicative inverse modulo m if <math>a</math> and <math>m</math> are relatively prime. It is therefore a natural conclusion that if <math>m</math> is a prime number all elements in the set will be relatively prime to m. |
|||
---- |
|||
Multiplication is repeated addition. |
|||
<math>23 \times 27 = \begin{matrix} 27 \\ \overbrace{23 + 23 + 23 + \cdots + 23} \end{matrix} = 621</math> |
|||
<math>27 \times 23 = \begin{matrix} 23 \\ \overbrace{27 + 27 + 27 + \cdots + 27} \end{matrix} = 621</math> |
|||
One may interpret this as counting the units in a 23×27 rectangle; one may choose to count along either 23 rows or 27 columns, but both ways lead to the same answer. |
|||
Exponentiation is repeated multiplication, but it does not have the same properties as multiplication; 2<sup>3</sup> = 8, but 3<sup>2</sup> = 9. |
|||
== Tedious Theorem == |
== Tedious Theorem == |
||
# <math>a + b = c + |
# <math>a + b = c + b \Rightarrow a = c </math> "cancellation property" |
||
#: Proof: |
#: Proof: |
||
#: By F4, <math>\exists d \mbox{ s.t. } b + d = 0</math> |
#: By F4, <math>\exists d \mbox{ s.t. } b + d = 0</math> |
||
Line 140: | Line 196: | ||
# <math> a \cdot b = c \cdot b , (b \ne 0) \Rightarrow a = c </math> |
# <math> a \cdot b = c \cdot b , (b \ne 0) \Rightarrow a = c </math> |
||
# <math>a + O' = a \Rightarrow O' = 0</math> |
# <math>a + O' = a \Rightarrow O' = 0</math> |
||
#: Proof: |
|||
⚫ | |||
#: <math>\,\! a + O' = a</math> |
|||
#: <math>\Rightarrow a + O' = a + 0</math> by F3 |
#: <math>\Rightarrow a + O' = a + 0</math> by F3 |
||
#: <math>\Rightarrow O' = 0</math> by adding the additive inverse of ''a'' to both sides |
#: <math>\Rightarrow O' = 0</math> by adding the additive inverse of ''a'' to both sides |
||
Line 148: | Line 205: | ||
#: <math>\,\! \mbox{Aside: } a - b = a + (-b)</math> |
#: <math>\,\! \mbox{Aside: } a - b = a + (-b)</math> |
||
#: <math>\frac ab = a \cdot b^{-1}</math> |
#: <math>\frac ab = a \cdot b^{-1}</math> |
||
# <math>\,\! -(-a) = a |
# <math>\,\! -(-a) = a = (a^{-1})^{-1}</math> |
||
# <math>a \cdot 0 = 0</math> |
# <math>a \cdot 0 = 0</math> |
||
#: Proof: |
#: Proof: |
||
Line 159: | Line 216: | ||
# <math>(-a) \cdot (-b) = a \cdot b</math> |
# <math>(-a) \cdot (-b) = a \cdot b</math> |
||
# (Bonus) <math>\,\! (a + b)(a - b) = a^2 - b^2</math> |
# (Bonus) <math>\,\! (a + b)(a - b) = a^2 - b^2</math> |
||
== Quotation of the Day == |
|||
...... |
Latest revision as of 21:44, 26 November 2009
|
Yangjiay - Page 1
(In the above gallery, there is a complete set of notes for the lecture given by Professor Natan on September 15th in PDF form.)
The real numbers A set with two binary operators and two special elements s.t.
- Note: or means inclusive or in math.
Definition: A field is a set F with two binary operators : F×F → F, : F×F → F and two elements s.t.
Examples
-
- is not a field because not every element has a multiplicative inverse.
- Let
- Then
- Therefore F4 fails; there is no number b in F6 s.t. a · b = 1
|
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Theorem: F2 is a field.
In order to prove that the associative property holds, make a table (similar to a truth table) for a, b and c.
a | b | c | |
---|---|---|---|
0 | 0 | 0 | |
0 | 0 | 1 | |
0 | 1 | 0 | |
0 | 1 | 1 | (0 + 1) + 1 =? 0 + (1 + 1) 1 + 1 =? 0 + 0 0 = 0 |
1 | 0 | 0 | |
1 | 0 | 1 | |
1 | 1 | 0 | |
1 | 1 | 1 |
Theorem: for is a field iff (if and only if) is a prime number
Proof:
has a multiplicative inverse modulo if and only if a and m are relatively prime.
This can be shown using Bézout's identity:
We have shown that has a multiplicative inverse modulo m if and are relatively prime. It is therefore a natural conclusion that if is a prime number all elements in the set will be relatively prime to m.
Multiplication is repeated addition.
One may interpret this as counting the units in a 23×27 rectangle; one may choose to count along either 23 rows or 27 columns, but both ways lead to the same answer.
Exponentiation is repeated multiplication, but it does not have the same properties as multiplication; 23 = 8, but 32 = 9.
Tedious Theorem
- "cancellation property"
- Proof:
- By F4,
- by F2
- by choice of d
- by F3
-
- Proof:
- by F3
- by adding the additive inverse of a to both sides
-
-
- Proof:
- by F3
- by F5
-
- So there is no 0−1
- (Bonus)
Quotation of the Day
......