09-240/Classnotes for Tuesday October 13: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
(Add partial notes.) |
||
Line 1: | Line 1: | ||
{{09-240/Navigation}} |
{{09-240/Navigation}} |
||
<gallery> |
|||
⚫ | |||
Image:Oct 13 notes page 1.JPG|[[User:Bright|Bright]] - 1 |
|||
Image:Oct 13 notes page 2.JPG|2 |
|||
Image:Oct 13 notes page 3.JPG|3 |
|||
⚫ | |||
</gallery> |
|||
== Replacement Theorem == |
|||
... |
|||
<ol> |
|||
<li value="3"> |
|||
dim('''V''') = ''n'' |
|||
<ol style="list-style-type: lower-alpha"> |
|||
<li>If ''G'' generates '''V''' then <math>|G| \ge n</math>. If also <math>\,\! |G| = n</math> then ''G'' is a basis.</li> |
|||
<li>If ''L'' is linearly dependent then <math>|L| \le n</math>. If also <math>\,\! |L| = n</math> then ''L'' is a basis. If also <math>\,\! |L| < n</math> then ''L'' can be extended to a basis. |
|||
<u>Proofs</u> |
|||
''a1.'' If ''G'' has a subset which is a basis then that subset has ''n'' elements, so <math>|G| \ge n</math>. <br /> |
|||
''a2.'' Let <math>\beta</math> be a basis of '''V''', then <math>\,\! |B| = n</math>. Now use replacement with ''G'' & ''L'' = <math>\beta</math>. Hence, <math>|G| \ge |L| = |B| = n</math>.<br /> |
|||
<u>a.</u> From a1 and a2, we know <math>|G| \ge n</math>. If <math>\,\! |G| = n</math> then ''G'' contains a basis <math>\beta</math>. But <math>\,\! |B| = n</math>, so <math>\,\! |G| = \beta</math>, and hence ''G'' is a basis.<br /> |
|||
<br /> |
|||
<u>b.</u> Use replacement with ''G' being some basis of '''V'''. |''G''| = ''n''.<br /> |
|||
<br /> |
|||
If <math>|L| = |G|</math> then <math>|R| = n = |G|</math>, so <math>R = G</math>, so <math>(G \backslash R) \cup L</math> generates, so ''L'' generates, so ''L'' is a basis since it is linearly independent.<br /> |
|||
<br /> |
|||
We have that ''L'' is basis. If <math>|L| < |G|</math> the nagain find <math>R \subset G</math> such that <math>|R| = |L|</math> and <math>(G \backslash R) \cup L</math> generates.<br /> |
|||
<br /> |
|||
1. <math>\beta</math> generates '''V'''. <br /> |
|||
2. <math>|B| \le |G| - |R| + |L| = n</math>. So by part a, <math>\beta</math> is a basis.<br /> |
|||
3. |
|||
</li> |
|||
</ol> |
|||
</li> |
|||
<li value="4"> |
|||
If '''V''' is finite-dimensional (f.d.) and <math>\mathbf W \subset \mathbf V</math> is a subspace of '''V''', then '''W''' is also finite, and <math>\operatorname{dim}(\mathbf W) \le \operatorname{dim}(\mathbf V)</math>. If also dim('''W''') = dim('''V''') then '''W''' = '''V''' and if dim('''W''') < dim('''V''') then any basis of '''W''' can be extended to a basis of '''V'''.<br /> |
|||
<br /> |
|||
Proof: Assuming '''W''' is finite-dimensional, pick a basis <math>\beta</math> of '''W'''; <math>\beta</math> is linearly independent in '''V''' so by Corollary 3 of part b, <math>|B| \le \operatorname{dim}(\mathbf V) \Rightarrow \operatorname{dim}(\mathbf W) = |B| \le \operatorname{dim}(\mathbf V)</math>. So span(<math>\beta</math>) = '''V''' = '''W''' so '''V''' = '''W'''. ...<br /> |
|||
<br /> |
|||
Assume '''W''' is not finite-dimensional. <math>\mathbf W \ne \{0\}</math> so pick a <math>x_1 \in W</math> such that <math>x_1 \ne 0</math>. So <math>\{x_1\}</math> is linearly independent in '''W''', and <math>\operatorname{span}(\{x_1\}) \subsetneq \mathbf W</math>. Pick <math>x_2 \in W \backslash \operatorname{span}(\{x_1\})</math>. So <math>\{x_1, x_2\}</math> is linearly dependent and <math>\operatorname{span}(\{x_1, x_2\}) \subsetneq \mathbf W</math>. Pick <math>x_3 \in W \backslash \operatorname{span}(\{x_1, x_2\})</math> ... continue in this way to get a sequence <math>x_1, x_2, \ldots, x_{n+1}</math> where ''n'' = dim('''V''') and <math>\{x_1, \ldots, x_{n+1}\}</math> is linearly independent. There is a contradiction by Corollary 3.b. |
|||
</li> |
|||
</ol> |
|||
== The Lagrange Interpolation Formula == |
|||
[Aside: <math>(a - x)(b - x) \ldots (z - x) = 0</math> because <math>x - x = 0</math>] |
|||
Where <math>1 \le i < n,</math> |
|||
Let <math>x_i</math> be distinct points in <math>\real</math>. |
|||
Let <math>y_i</math> be any points in <math>\real</math>. |
|||
Can you find a polynomial <math>P \in \mathbb P_n(\real)</math> such that <math>P(x_i) = y_i</math>? Is it unique? |
|||
'''Example''': |
|||
: <math>x_i = 0, 1, 3</math> |
|||
: <math>y_i = 5, 2, 2</math> |
|||
Can we find a <math>P \in \mathbb P_2</math> such that |
|||
: <math>P(0) = 5</math> |
|||
: <math>P(1) = 2</math> |
|||
: <math>P(2) = 2</math>? |
|||
Solution: Let <math>\tilde P_i(x) = \prod_{j=1, j \ne 1}^{n+1} (x - x_j) \in \mathbb P_n(\real)</math>. (Remember [http://en.wikipedia.org/wiki/Capital_pi_notation capital pi notation].) |
|||
Then <math>\tilde P_i(x_k) = \begin{cases} |
|||
0 & i \ne k \\ |
|||
\prod_{i \ne j} (x_i - x_j) & i = k \\ |
|||
\end{cases}</math> |
|||
: <math>\tilde P_1 = (x - x_2)(x - x_3) = (x - 1)(x - 3) = x^2 - 4x + 3</math> |
|||
: <math>\tilde P_2 = (x - 0)(x - 3) = x^2 - 3x</math> |
|||
: <math>\tilde P_3 = (x - 0)(x - 1) = x^2 - x</math> |
|||
<math>\begin{matrix} |
|||
\tilde P_1(0) = 3 & \tilde P_1(1) = 0 & \tilde P_1(3) = 0 \\ |
|||
\tilde P_2(0) = 0 & \tilde P_2(1) = -2 & \tilde P_2(3) = 0 \\ |
|||
\tilde P_3(0) = 0 & \tilde P_3(1) = 0 & \tilde P_3(3) = 6 \\ |
|||
\end{matrix}</math> |
|||
Set <math>P_i(x) = \frac1{\tilde P_i(x)} \cdot \tilde P_i = \prod_{j \ne i} \frac{(x - x_j)}{(x_i - x_j)}</math> |
|||
Then <math>P_i(x_k) = \begin{cases} |
|||
0 & i \ne k \\ |
|||
1 & i = k \\ |
|||
\end{cases} </math> |
|||
: <math>P_1(x) = \frac13 x^2 - \frac43 x + 1</math> |
|||
: <math>P_2(x) = -\frac12 x^2 + \frac32 x</math> |
|||
: <math>P_3(x) = \frac16 x^2 - \frac16 x</math> |
|||
Let <math>P = \sum_{i=1}^{n+1} y_i P_i(x) \in \mathbb P_n(\real)</math> |
|||
: <math>P = 5 \cdot \left( \frac13 x^2 - \frac43 x + 1 \right) + 2 \cdot \left( -\frac12 x^2 + \frac32 x \right) + 2 \cdot \left( \frac16 x^2 - \frac16 x \right)</math> |
|||
: <math>\,\! = x^2 - 4x + 5</math> |
Revision as of 01:39, 7 December 2009
|
Bright - 1
Replacement Theorem
...
-
dim(V) = n
- If G generates V then . If also then G is a basis.
- If L is linearly dependent then . If also then L is a basis. If also then L can be extended to a basis.
Proofs
a1. If G has a subset which is a basis then that subset has n elements, so .
a2. Let be a basis of V, then . Now use replacement with G & L = . Hence, .
a. From a1 and a2, we know . If then G contains a basis . But , so , and hence G is a basis.
b. Use replacement with G' being some basis of V. |G| = n.
If then , so , so generates, so L generates, so L is a basis since it is linearly independent.
We have that L is basis. If the nagain find such that and generates.
1. generates V.
2. . So by part a, is a basis.
3.
-
If V is finite-dimensional (f.d.) and is a subspace of V, then W is also finite, and . If also dim(W) = dim(V) then W = V and if dim(W) < dim(V) then any basis of W can be extended to a basis of V.
Proof: Assuming W is finite-dimensional, pick a basis of W; is linearly independent in V so by Corollary 3 of part b, . So span() = V = W so V = W. ...
Assume W is not finite-dimensional. so pick a such that . So is linearly independent in W, and . Pick . So is linearly dependent and . Pick ... continue in this way to get a sequence where n = dim(V) and is linearly independent. There is a contradiction by Corollary 3.b.
The Lagrange Interpolation Formula
[Aside: because ]
Where
Let be distinct points in .
Let be any points in .
Can you find a polynomial such that ? Is it unique?
Example:
Can we find a such that
- ?
Solution: Let . (Remember capital pi notation.)
Then
Set
Then
Let