09-240/Classnotes for Tuesday October 13: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
(Add partial notes.)
Line 1: Line 1:
{{09-240/Navigation}}
{{09-240/Navigation}}
<gallery>
[[Image:Oct 13 notes page 1.JPG|600px]]
[[Image:Oct 13 notes page 2.JPG|600px]]
Image:Oct 13 notes page 1.JPG|[[User:Bright|Bright]] - 1
[[Image:Oct 13 notes page 3.JPG|600px]]
Image:Oct 13 notes page 2.JPG|2
[[Image:Oct 13 notes page 4.JPG|600px]]
Image:Oct 13 notes page 3.JPG|3
Image:Oct 13 notes page 4.JPG|4
</gallery>

== Replacement Theorem ==

...

<ol>
<li value="3">
dim('''V''') = ''n''
<ol style="list-style-type: lower-alpha">
<li>If ''G'' generates '''V''' then <math>|G| \ge n</math>. If also <math>\,\! |G| = n</math> then ''G'' is a basis.</li>
<li>If ''L'' is linearly dependent then <math>|L| \le n</math>. If also <math>\,\! |L| = n</math> then ''L'' is a basis. If also <math>\,\! |L| < n</math> then ''L'' can be extended to a basis.

<u>Proofs</u>
''a1.'' If ''G'' has a subset which is a basis then that subset has ''n'' elements, so <math>|G| \ge n</math>. <br />
''a2.'' Let <math>\beta</math> be a basis of '''V''', then <math>\,\! |B| = n</math>. Now use replacement with ''G'' & ''L'' = <math>\beta</math>. Hence, <math>|G| \ge |L| = |B| = n</math>.<br />
<u>a.</u> From a1 and a2, we know <math>|G| \ge n</math>. If <math>\,\! |G| = n</math> then ''G'' contains a basis <math>\beta</math>. But <math>\,\! |B| = n</math>, so <math>\,\! |G| = \beta</math>, and hence ''G'' is a basis.<br />
<br />
<u>b.</u> Use replacement with ''G' being some basis of '''V'''. |''G''| = ''n''.<br />
<br />
If <math>|L| = |G|</math> then <math>|R| = n = |G|</math>, so <math>R = G</math>, so <math>(G \backslash R) \cup L</math> generates, so ''L'' generates, so ''L'' is a basis since it is linearly independent.<br />
<br />
We have that ''L'' is basis. If <math>|L| < |G|</math> the nagain find <math>R \subset G</math> such that <math>|R| = |L|</math> and <math>(G \backslash R) \cup L</math> generates.<br />
<br />
1. <math>\beta</math> generates '''V'''. <br />
2. <math>|B| \le |G| - |R| + |L| = n</math>. So by part a, <math>\beta</math> is a basis.<br />
3.
</li>
</ol>
</li>
<li value="4">
If '''V''' is finite-dimensional (f.d.) and <math>\mathbf W \subset \mathbf V</math> is a subspace of '''V''', then '''W''' is also finite, and <math>\operatorname{dim}(\mathbf W) \le \operatorname{dim}(\mathbf V)</math>. If also dim('''W''') = dim('''V''') then '''W''' = '''V''' and if dim('''W''') < dim('''V''') then any basis of '''W''' can be extended to a basis of '''V'''.<br />
<br />
Proof: Assuming '''W''' is finite-dimensional, pick a basis <math>\beta</math> of '''W'''; <math>\beta</math> is linearly independent in '''V''' so by Corollary 3 of part b, <math>|B| \le \operatorname{dim}(\mathbf V) \Rightarrow \operatorname{dim}(\mathbf W) = |B| \le \operatorname{dim}(\mathbf V)</math>. So span(<math>\beta</math>) = '''V''' = '''W''' so '''V''' = '''W'''. ...<br />
<br />
Assume '''W''' is not finite-dimensional. <math>\mathbf W \ne \{0\}</math> so pick a <math>x_1 \in W</math> such that <math>x_1 \ne 0</math>. So <math>\{x_1\}</math> is linearly independent in '''W''', and <math>\operatorname{span}(\{x_1\}) \subsetneq \mathbf W</math>. Pick <math>x_2 \in W \backslash \operatorname{span}(\{x_1\})</math>. So <math>\{x_1, x_2\}</math> is linearly dependent and <math>\operatorname{span}(\{x_1, x_2\}) \subsetneq \mathbf W</math>. Pick <math>x_3 \in W \backslash \operatorname{span}(\{x_1, x_2\})</math> ... continue in this way to get a sequence <math>x_1, x_2, \ldots, x_{n+1}</math> where ''n'' = dim('''V''') and <math>\{x_1, \ldots, x_{n+1}\}</math> is linearly independent. There is a contradiction by Corollary 3.b.
</li>
</ol>

== The Lagrange Interpolation Formula ==

[Aside: <math>(a - x)(b - x) \ldots (z - x) = 0</math> because <math>x - x = 0</math>]

Where <math>1 \le i < n,</math>

Let <math>x_i</math> be distinct points in <math>\real</math>.

Let <math>y_i</math> be any points in <math>\real</math>.

Can you find a polynomial <math>P \in \mathbb P_n(\real)</math> such that <math>P(x_i) = y_i</math>? Is it unique?

'''Example''':

: <math>x_i = 0, 1, 3</math>
: <math>y_i = 5, 2, 2</math>

Can we find a <math>P \in \mathbb P_2</math> such that
: <math>P(0) = 5</math>
: <math>P(1) = 2</math>
: <math>P(2) = 2</math>?

Solution: Let <math>\tilde P_i(x) = \prod_{j=1, j \ne 1}^{n+1} (x - x_j) \in \mathbb P_n(\real)</math>. (Remember [http://en.wikipedia.org/wiki/Capital_pi_notation capital pi notation].)

Then <math>\tilde P_i(x_k) = \begin{cases}
0 & i \ne k \\
\prod_{i \ne j} (x_i - x_j) & i = k \\
\end{cases}</math>

: <math>\tilde P_1 = (x - x_2)(x - x_3) = (x - 1)(x - 3) = x^2 - 4x + 3</math>
: <math>\tilde P_2 = (x - 0)(x - 3) = x^2 - 3x</math>
: <math>\tilde P_3 = (x - 0)(x - 1) = x^2 - x</math>


<math>\begin{matrix}
\tilde P_1(0) = 3 & \tilde P_1(1) = 0 & \tilde P_1(3) = 0 \\
\tilde P_2(0) = 0 & \tilde P_2(1) = -2 & \tilde P_2(3) = 0 \\
\tilde P_3(0) = 0 & \tilde P_3(1) = 0 & \tilde P_3(3) = 6 \\
\end{matrix}</math>

Set <math>P_i(x) = \frac1{\tilde P_i(x)} \cdot \tilde P_i = \prod_{j \ne i} \frac{(x - x_j)}{(x_i - x_j)}</math>

Then <math>P_i(x_k) = \begin{cases}
0 & i \ne k \\
1 & i = k \\
\end{cases} </math>

: <math>P_1(x) = \frac13 x^2 - \frac43 x + 1</math>
: <math>P_2(x) = -\frac12 x^2 + \frac32 x</math>
: <math>P_3(x) = \frac16 x^2 - \frac16 x</math>

Let <math>P = \sum_{i=1}^{n+1} y_i P_i(x) \in \mathbb P_n(\real)</math>

: <math>P = 5 \cdot \left( \frac13 x^2 - \frac43 x + 1 \right) + 2 \cdot \left( -\frac12 x^2 + \frac32 x \right) + 2 \cdot \left( \frac16 x^2 - \frac16 x \right)</math>
: <math>\,\! = x^2 - 4x + 5</math>

Revision as of 01:39, 7 December 2009

Replacement Theorem

...

  1. dim(V) = n
    1. If G generates V then . If also then G is a basis.
    2. If L is linearly dependent then . If also then L is a basis. If also then L can be extended to a basis. Proofs a1. If G has a subset which is a basis then that subset has n elements, so .
      a2. Let be a basis of V, then . Now use replacement with G & L = . Hence, .
      a. From a1 and a2, we know . If then G contains a basis . But , so , and hence G is a basis.

      b. Use replacement with G' being some basis of V. |G| = n.

      If then , so , so generates, so L generates, so L is a basis since it is linearly independent.

      We have that L is basis. If the nagain find such that and generates.

      1. generates V.
      2. . So by part a, is a basis.
      3.
  2. If V is finite-dimensional (f.d.) and is a subspace of V, then W is also finite, and . If also dim(W) = dim(V) then W = V and if dim(W) < dim(V) then any basis of W can be extended to a basis of V.

    Proof: Assuming W is finite-dimensional, pick a basis of W; is linearly independent in V so by Corollary 3 of part b, . So span() = V = W so V = W. ...

    Assume W is not finite-dimensional. so pick a such that . So is linearly independent in W, and . Pick . So is linearly dependent and . Pick ... continue in this way to get a sequence where n = dim(V) and is linearly independent. There is a contradiction by Corollary 3.b.

The Lagrange Interpolation Formula

[Aside: because ]

Where

Let be distinct points in .

Let be any points in .

Can you find a polynomial such that ? Is it unique?

Example:

Can we find a such that

?

Solution: Let . (Remember capital pi notation.)

Then


Set

Then

Let