09-240/Classnotes for Tuesday September 29: Difference between revisions
(Yangjiay's notes.) |
(Add partial notes.) |
||
Line 10: | Line 10: | ||
Image:September 29 2009 Lecture Notes Page 6.jpg|Page 6 |
Image:September 29 2009 Lecture Notes Page 6.jpg|Page 6 |
||
</gallery> |
</gallery> |
||
== Vector subspaces == |
|||
'''Definition'''. <math>\mathbf W \subset \mathbf V</math> is a "subspace" if it is a vector space under the operations it inherits from '''V'''. |
|||
'''Theorem'''. <math>\mathbf W \subset \mathbf V</math> is a subspace iff it is "closed under addition and vector multiplication by scalars", i.e. <math>x, y \in \mathbf W \Rightarrow x + y \in \mathbf W</math> and <math>a \in F, x \in \mathbf W \Rightarrow ax \in \mathbf W</math>. |
|||
'''Goal''': Every VS has a "basis", so while we don't ''have'' to use coordinates, we always can. |
|||
'''Examples''' of what is not a subspace (without diagrams): |
|||
# A unit circle is not closed under addition of scalar multiplication. |
|||
# The x-axis <math>\cup</math> y-axis is closed under scalar multiplication, but not under addition. |
|||
# A single quadrant of the Cartesian plane is closed under addition, but not under scalar multiplication. |
|||
'''Examples''' of subspaces: |
|||
# <math>\{0\}</math> |
|||
# Any VS (which is a subspace of itself) |
|||
# A line passing through the origin (if it does not pass through the origin, then it is not closed under scalar multiplication) |
|||
# A plane |
|||
# Let <math>\mathbf V = \mathbb M_{n \times n}(F)</math>. If <math>W = \{ A \in \mathbf V : A^\top = A \}</math>, then '''W''' is a subspace of '''V'''. ('''W''' is the set of "symmetric" matrices in '''V'''; ''A''<sup>T</sup> denotes the [http://en.wikipedia.org/wiki/Transpose transpose] of ''A''.) |
|||
# <math>\mathbf W = \{ A \in \mathbb M_{n \times n} : \operatorname{tr}(A) = 0 \}</math> |
|||
#: where <math>\operatorname{tr}(A) = \sum_{i=1}^n a_{ii}</math> is the "trace" of ''A''. |
|||
#: Properties of trace: |
|||
## <math>\operatorname{tr}(0 \cdot A) = 0</math> |
|||
## <math>\operatorname{tr}(cA) = c \cdot \operatorname{tr}(A)</math> |
|||
## <math>\operatorname{tr}(A + B) = \operatorname{tr}(A) + \operatorname{tr}(B)</math> |
|||
#: so '''W''' is indeed a subspace. |
|||
'''Claim''': If '''W<sub>1</sub>''' and '''W<sub>2</sub>''' are subspaces of '''V''', then |
|||
# <math>W_1 \cap W_2 = \{ x \in \mathbf V : x \in \mathbf W_1 \mbox{ and } \mathbf W_2 \}</math> is a subspace of '''V''', '''W<sub>1</sub>''', and '''W<sub>2</sub>'''. |
|||
# But <math>W_1 \cup W_2 = \{ x \in \mathbf V : x \in \mathbf W_1 \mbox{ or } x \in \mathbf W_2 \}</math> is a subspace of '''V''' iff <math>\mathbf W_1 \subset \mathbf W_2</math> or <math>\mathbf W_2 \subset \mathbf W_1</math>. (See [[09-240:HW2|HW2]] pp. 20-21, #19.) |
|||
== Linear combinations == |
|||
'''Definition''': A vector ''u'' is a "linear combination" (l.c.) of vectors ''u''<sub>1</sub>, ..., ''u''<sub>n</sub> if there exists scalars ''a''<sub>1</sub>, ..., ''a''<sub>n</sub> such that |
|||
: <math>u = a_1 u_1 + a_2 u_2 + \ldots + a_n u_n</math> |
|||
'''Example''': <math>\mathbb P_n(F) = \{ \mbox{Polynomials of degree at most } n \mbox{ with coefficients in } ''F'' \}</math><br /> |
|||
<math>= \{ \sum_{i=0}^n a_i x^i : a_i \in F \}</math> |
|||
'''Definition''': A subset <math>S \subset \mathbf V</math> "generates" or "spans" '''V''' iff the set of linear combinations of elements of ''S'' is all of ''V''. |
|||
'''Example''': Let <math>\mathbf V = \mathbb M_{n \times n}(\real)</math><br /> |
|||
Let <math>M_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, M_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, M_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, M_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}</math><br /> |
|||
Then <math>S = \{ M_1, M_2, M_3, M_4 \}</math> generates '''V'''. |
|||
Proof: Given <math>\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb M_{2 \times 2}(\real), write</math> <br /> |
|||
<math>\begin{pmatrix} a & b \\ c & d \end{pmatrix} = aM_1 + bM_2 + cM_3 + dM_4.</math> |
|||
'''Example''': Let <math>N_1 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, N_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, N_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, N_4 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}</math><br /> |
|||
Does <math>\{ N_1, N_2, N_3, N_4 \}</math> generate '''V'''? <br /> |
|||
: <math>M_1 = -\frac23 N_1 + \frac13(N_2 + N_3 + N_4)</math> |
|||
: <math>M_2 = -\frac23 N_2 + \frac13(N_1 + N_3 + N_4)</math> |
|||
: <math>M_3 = -\frac23 N_3 + \frac13(N_1 + N_2 + N_4)</math> |
|||
: <math>M_4 = -\frac23 N_4 + \frac13(N_1 + N_2 + N_3)</math> |
|||
Then <math>\begin{pmatrix} a & b \\ c & d \end{pmatrix} = aM_1 + bM_2 + cM_3 + dM_4 =</math> |
|||
: <math>a \cdot \left( -\frac23 N_1 + \frac13(N_2 + N_3 + N_4) \right) + b \cdot \left( -\frac23 N_2 + \frac13(N_1 + N_3 + N_4) \right) + \ldots</math> |
|||
'''Theorem''': If <math>S \in \mathbf V</math>, then <math>\operatorname{span}(S) = </math> {all l.c. of elements of ''S''} is a subspace of '''V'''. |
Revision as of 00:28, 7 December 2009
|
Yangjiay - Page 1
Vector subspaces
Definition. is a "subspace" if it is a vector space under the operations it inherits from V.
Theorem. is a subspace iff it is "closed under addition and vector multiplication by scalars", i.e. and .
Goal: Every VS has a "basis", so while we don't have to use coordinates, we always can.
Examples of what is not a subspace (without diagrams):
- A unit circle is not closed under addition of scalar multiplication.
- The x-axis y-axis is closed under scalar multiplication, but not under addition.
- A single quadrant of the Cartesian plane is closed under addition, but not under scalar multiplication.
Examples of subspaces:
- Any VS (which is a subspace of itself)
- A line passing through the origin (if it does not pass through the origin, then it is not closed under scalar multiplication)
- A plane
- Let . If , then W is a subspace of V. (W is the set of "symmetric" matrices in V; AT denotes the transpose of A.)
-
- where is the "trace" of A.
- Properties of trace:
- so W is indeed a subspace.
Claim: If W1 and W2 are subspaces of V, then
- is a subspace of V, W1, and W2.
- But is a subspace of V iff or . (See HW2 pp. 20-21, #19.)
Linear combinations
Definition: A vector u is a "linear combination" (l.c.) of vectors u1, ..., un if there exists scalars a1, ..., an such that
Example:
Definition: A subset "generates" or "spans" V iff the set of linear combinations of elements of S is all of V.
Example: Let
Let
Then generates V.
Proof: Given
Example: Let
Does generate V?
Then
Theorem: If , then {all l.c. of elements of S} is a subspace of V.