09-240/Classnotes for Tuesday September 22: Difference between revisions

From Drorbn
Jump to navigationJump to search
(→‎Class notes for today: Add vector section before examples.)
 
(5 intermediate revisions by 2 users not shown)
Line 9: Line 9:
{{09-240/Class Notes Warning}}
{{09-240/Class Notes Warning}}
==Class notes for today==
==Class notes for today==

<gallery>
Image:September 22 2009 lecture notes page 1.jpg|[[User:Yangjiay|Yangjiay]] - Page 1
Image:September 22 2009 lecture notes page 2.jpg|Page 2
Image:September 22 2009 lecture notes page 3.jpg|Page 3
Image:September 22 2009 lecture notes page 4.jpg|Page 4
Image:September 22 2009 lecture notes page 5.jpg|Page 5
</gallery>


Vectors:
Vectors:
Line 14: Line 22:
# can be multiplied by a number (not another vector)
# can be multiplied by a number (not another vector)


Let <math>\mathcal F</math> be a field. A vector space <math>\mathbf V</math> over the field <math>\mathcal F</math> is a set <math>\mathbf V</math> (of vectors) with a special element <math>0_V</math>, a binary operation <math>+ : \mathbf V \times \mathbf V \rightarrow \mathbf V</math>, a binary operation <math>\cdot : \mathcal F \times \mathbf V \rightarrow \mathbf V</math>.
Let ''F'' be a field. A vector space ''V'' over the field ''F'' is a set ''V'' (of vectors) with a special element 0<sub>''V''</sub>, a binary operation + : ''V'' × ''V'' ''V'', a binary operation : ''F'' × ''V'' ''V''.


{| style="border: solid 1px black"
{| style="border: solid 1px black"
Line 20: Line 28:
| Convention for today:
| Convention for today:
: <math>x, y, z \in \mathbf V</math>
: <math>x, y, z \in \mathbf V</math>
: <math>a, b, c \in \mathcal F</math>
: <math>a, b, c \in F</math>
|}
|}


Line 38: Line 46:
Set <math>y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix}</math> and note
Set <math>y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix}</math> and note
: <math>x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n}</math>
: <math>x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n}</math>

=== Examples ===

# <math>F^n \mbox{ for } n \in \mathbb N</math>
#: <math>F^n = \left\{ \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} : a_i \in F \right\}</math>
#: <math>\begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \\ \vdots \\ a_n + b_n \end{pmatrix}</math>
#: <math>a \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \begin{pmatrix} ab_1 \\ ab_2 \\ \vdots \\ ab_n \end{pmatrix}</math>
#: ...
# <math>\mathrm M_{m \times n}(F)</math>
#: ...
# <math>\mathcal F(S, F)</math>
# Polynomials
# <math>...</math>

=== Food for thought ===

What is wrong with setting

<math>
\begin{pmatrix}
2 & 3 \\
4 & 5 \\
\end{pmatrix} \cdot \begin{pmatrix}
6 & 7 \\
8 & 9 \\
\end{pmatrix} = \begin{pmatrix}
2 \cdot 6 & 3 \cdot 7 \\
4 \cdot 8 & 5 \cdot 9 \\
\end{pmatrix} = \begin{pmatrix}
12 & 21 \\
32 & 45 \\
\end{pmatrix} ?
</math>

# Unnecessary for a V.S.
# This is useless, since it does not describe reality. For example, a mathematical theory with 46 dimensions can be perfect and mathematically elegant, but if the only solution to it is a universe in which life cannot form it is not reality, hence we have no use for it.

Latest revision as of 16:49, 24 September 2009

Some links


WARNING: The notes below, written for students and by students, are provided "as is", with absolutely no warranty. They can not be assumed to be complete, correct, reliable or relevant. If you don't like them, don't read them. It is a bad idea to stop taking your own notes thinking that these notes can be a total replacement - there's nothing like one's own handwriting! Visit this pages' history tab to see who added what and when.

Class notes for today

Vectors:

  1. can be added
  2. can be multiplied by a number (not another vector)

Let F be a field. A vector space V over the field F is a set V (of vectors) with a special element 0V, a binary operation + : V × VV, a binary operation • : F × VV.

Convention for today:

VS1
VS2
VS3
VS4
VS5
VS6
VS7
VS8

Proof of VS4

Take an arbitrary

Set and note

Examples

  1. ...
  2. ...
  3. Polynomials

Food for thought

What is wrong with setting

  1. Unnecessary for a V.S.
  2. This is useless, since it does not describe reality. For example, a mathematical theory with 46 dimensions can be perfect and mathematically elegant, but if the only solution to it is a universe in which life cannot form it is not reality, hence we have no use for it.