09-240/Classnotes for Tuesday September 22: Difference between revisions
No edit summary |
(→Class notes for today: Add vector section before examples.) |
||
| Line 9: | Line 9: | ||
{{09-240/Class Notes Warning}} |
{{09-240/Class Notes Warning}} |
||
==Class notes for today== |
==Class notes for today== |
||
Vectors: |
|||
# can be added |
|||
# can be multiplied by a number (not another vector) |
|||
Let <math>\mathcal F</math> be a field. A vector space <math>\mathbf V</math> over the field <math>\mathcal F</math> is a set <math>\mathbf V</math> (of vectors) with a special element <math>0_V</math>, a binary operation <math>+ : \mathbf V \times \mathbf V \rightarrow \mathbf V</math>, a binary operation <math>\cdot : \mathcal F \times \mathbf V \rightarrow \mathbf V</math>. |
|||
{| style="border: solid 1px black" |
|||
|- |
|||
| Convention for today: |
|||
: <math>x, y, z \in \mathbf V</math> |
|||
: <math>a, b, c \in \mathcal F</math> |
|||
|} |
|||
VS1 <math>\forall x, y \in \mathbf V, x + y = y + x</math><br /> |
|||
VS2 <math>\cdots (x + y) + z = x + (y + z)</math><br /> |
|||
VS3 <math>\cdots x + 0 = x</math><br /> |
|||
VS4 <math>\forall x, \exists y \mbox{ s.t. } x + y = 0</math><br /> |
|||
VS5 <math>1 \cdot x = x</math><br /> |
|||
VS6 <math>a \cdot (b \cdot x) = (a \cdot b) \cdot x</math><br /> |
|||
VS7 <math>a \cdot (x + y) = ax + ay</math><br /> |
|||
VS8 <math>(a + b) \cdot x = ax + bx</math> |
|||
=== Proof of VS4 === |
|||
Take an arbitrary <math>x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in F^n</math> |
|||
Set <math>y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix}</math> and note |
|||
: <math>x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n}</math> |
|||
Revision as of 16:24, 22 September 2009
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Some links
- The Complex Numbers by Computer.
- Dori Eldar's work on "mechanical computations": Machines as Calculating Devices and Computing the function [math]\displaystyle{ W=Z^2 }[/math] the hard way.
- The "Dimensions" video on "Nombres complexes", is at http://dimensions-math.org/Dim_reg_AM.htm (and then go to "Dimensions_5".
Class notes for today
Vectors:
- can be added
- can be multiplied by a number (not another vector)
Let [math]\displaystyle{ \mathcal F }[/math] be a field. A vector space [math]\displaystyle{ \mathbf V }[/math] over the field [math]\displaystyle{ \mathcal F }[/math] is a set [math]\displaystyle{ \mathbf V }[/math] (of vectors) with a special element [math]\displaystyle{ 0_V }[/math], a binary operation [math]\displaystyle{ + : \mathbf V \times \mathbf V \rightarrow \mathbf V }[/math], a binary operation [math]\displaystyle{ \cdot : \mathcal F \times \mathbf V \rightarrow \mathbf V }[/math].
Convention for today:
|
VS1 [math]\displaystyle{ \forall x, y \in \mathbf V, x + y = y + x }[/math]
VS2 [math]\displaystyle{ \cdots (x + y) + z = x + (y + z) }[/math]
VS3 [math]\displaystyle{ \cdots x + 0 = x }[/math]
VS4 [math]\displaystyle{ \forall x, \exists y \mbox{ s.t. } x + y = 0 }[/math]
VS5 [math]\displaystyle{ 1 \cdot x = x }[/math]
VS6 [math]\displaystyle{ a \cdot (b \cdot x) = (a \cdot b) \cdot x }[/math]
VS7 [math]\displaystyle{ a \cdot (x + y) = ax + ay }[/math]
VS8 [math]\displaystyle{ (a + b) \cdot x = ax + bx }[/math]
Proof of VS4
Take an arbitrary [math]\displaystyle{ x = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \in F^n }[/math]
Set [math]\displaystyle{ y = \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} }[/math] and note
- [math]\displaystyle{ x + y = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} -a_1 \\ -a_2 \\ \vdots \\ -a_n \end{pmatrix} = \begin{pmatrix} a_1 + (-a_1) \\ a_2 + (-a_2) \\ \vdots \\ a_n + (-a_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = 0_{F^n} }[/math]