09-240/Classnotes for Thursday September 17: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 23: Line 23:
• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers
• Convention for today: <math>x,y,a,b,c,d,...</math> will be real numbers; <math>z,w,u,v,...</math> will be complex numbers


Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math>
Dream: Find a field <math>\mathbb C</math> that contains <math>\mathbb R</math> and also contains an element <math>i</math> such that <math>i^2=-1</math>


'''Implications:'''
'''Implications:'''
Line 35: Line 35:
• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math>
• <math>\Rightarrow (a+bi)+(c+di)</math> must be in <math>\mathbb C</math>


<math>=(a+c)+(bi+di)</math>
:<math>=(a+c)+(bi+di)</math>


<math>=(a+c)+(b+d)i</math>
:<math>=(a+c)+(b+d)i</math>


<math>=e+fi</math>
:<math>=e+fi</math>


<math>(a+bi)(c+di)=(a+c)+(b+d)i</math>
<math>(a+bi)(c+di)=(a+c)+(b+d)i</math>


<math>=a(c+di)+bi(c+di)</math>
:<math>=a(c+di)+bi(c+di)</math>


<math>=ac+adi+bic+bidi</math>
:<math>=ac+adi+bic+bidi</math>


<math>=ac+bdi^2 + adi+bci</math>
:<math>=ac+bdi^2 + adi+bci</math>


<math>=(ac-bd)+(ad+bc)i</math>
:<math>=(ac-bd)+(ad+bc)i</math>


<math>=e+fi</math>
:<math>=e+fi</math>


<math>0_C=0+0i</math>
:<math>0_C=0+0i</math>


<math>1_C=1+0i</math>
:<math>1_C=1+0i</math>


<math>(a+bi)+(c+di)=0+0i</math>
:<math>(a+bi)+(c+di)=0+0i</math>


<math>-(a+bi)=(-a)+(-b)i</math>
:<math>-(a+bi)=(-a)+(-b)i</math>


<math>a+bi \neq 0 \Rightarrow (a,b) \neq 0</math>
:<math>a+bi \neq 0 \Rightarrow (a,b) \neq 0</math>


• Find another element of <math>\mathbb C</math>, <math>x+yi</math> such that <math>(a+bi)(x+yi)=(1+0i)</math>
• Find another element of <math>\mathbb C</math>, <math>x+yi</math> such that <math>(a+bi)(x+yi)=(1+0i)</math>


<math>(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i</math>
:<math>(a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i</math>


<math>ax-by=1</math> (1)
:<math>ax-by=1</math> (1)


<math>bx+ay=0</math> (2)
:<math>bx+ay=0</math> (2)


<math>a,b</math> are given
:<math>a,b</math> are given


<math>x,y</math> unknowns
:<math>x,y</math> unknowns


• <math>b \times (1)</math> <math>abx-b^2y=b</math>
• <math>b \times (1)</math> <math>abx-b^2y=b</math>
Line 79: Line 79:
• <math>a \times (2)</math> <math>abx+a^2y=0</math>
• <math>a \times (2)</math> <math>abx+a^2y=0</math>


<math>\Rightarrow a^{2}y+b^{2}y=-b</math>
:<math>\Rightarrow a^{2}y+b^{2}y=-b</math>


<math>y=\frac{-b}{a^{2}+b^{2}}</math>
:<math>y=\frac{-b}{a^{2}+b^{2}}</math>


<math>x=\frac{a}{a^{2}+b^{2}}</math>
:<math>x=\frac{a}{a^{2}+b^{2}}</math>


• (Note: We can divide since we assumed that <math>(a,b) \neq 0</math>
• (Note: We can divide since we assumed that <math>(a,b) \neq 0</math>


<math>(a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }}</math>
:<math>(a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }}</math>


Def: Let <math>\mathbb C</math> be the set of all pairs of real numbers <math>{(a,b)}={a+bi}</math>
Def: Let <math>\mathbb C</math> be the set of all pairs of real numbers <math>{(a,b)}={a+bi}</math>


with <math>+: (a,b)+(c,d)=(a+c,b+d)</math>
with <math>+: (a,b)+(c,d)=(a+c,b+d)</math>


<math>(a+bi)+(c+di)=(a+c)+(b+d)i</math>
:<math>(a+bi)+(c+di)=(a+c)+(b+d)i</math>


<math>x:(a+bi)(c+di)=</math>...you know what
<math>\times :(a+bi)(c+di)=</math>...you know what


• 0 = you know what
• 0 = you know what
Line 101: Line 101:
• 1 = you know what
• 1 = you know what


'''Theorem:'''
• Thm:


• 1. <math>\mathbb C</math> is a field
#:<math>\mathbb C</math> is a field


• 2. <math>(0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0)</math>
#:<math>(0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0)</math>


• 3. <math>\mathbb R \rightarrow \mathbb C</math> by <math>a \rightarrow a+0i</math>
#:<math>\mathbb R \rightarrow \mathbb C</math> by <math>a \rightarrow a+0i</math>


Proof: <math>F_{1},F_{2},F_{3},...</math>
Proof: <math>F_{1},F_{2},F_{3},...</math>


Example: <math>F_{5}</math> (distributivity)
'''Example:''' <math>F_{5}</math> (distributivity)


• Show that <math>z(u+v)=zu+zv</math>
• Show that <math>z(u+v)=zu+zv</math>


Let <math>z=(a+bi)</math>
Let <math>z=(a+bi)</math>


<math>u=(c+di)</math>
:<math>u=(c+di)</math>


<math>v=(e+fi)</math>
:<math>v=(e+fi)</math>


When <math>a,b,c,d,e,f \in \mathbb R</math>
When <math>a,b,c,d,e,f \in \mathbb R</math>


<math>(a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots</math>
:<math>(a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots</math>


• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves)
• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves)

Revision as of 18:33, 17 September 2009

NSERC - CMS Math in Moscow Scholarships

The Natural Sciences and Engineering Research Council (NSERC) and the Canadian Mathematical Society (CMS) support scholarships at $9,000 each. Canadian students registered in a mathematics or computer science program are eligible.

The scholarships are to attend a semester at the small elite Moscow Independent University.

Math in Moscow Program http://www.mccme.ru/mathinmoscow/

Application details http://www.cms.math.ca/Scholarships/Moscow

For additional information please see your department or call the CMS at 613-733-2662.

Deadline September 30, 2009 to attend the Winter 2010 semester.

Some links

Class notes for today

• Convention for today: [math]\displaystyle{ x,y,a,b,c,d,... }[/math] will be real numbers; [math]\displaystyle{ z,w,u,v,... }[/math] will be complex numbers

Dream: Find a field [math]\displaystyle{ \mathbb C }[/math] that contains [math]\displaystyle{ \mathbb R }[/math] and also contains an element [math]\displaystyle{ i }[/math] such that [math]\displaystyle{ i^2=-1 }[/math]

Implications:

[math]\displaystyle{ b \in \mathbb R \Rightarrow bi \in \mathbb C }[/math]

[math]\displaystyle{ a \in \mathbb R \Rightarrow a+bi \in \mathbb C }[/math]

[math]\displaystyle{ c,d \in \mathbb R \Rightarrow c+di \in \mathbb C }[/math]

[math]\displaystyle{ \Rightarrow (a+bi)+(c+di) }[/math] must be in [math]\displaystyle{ \mathbb C }[/math]

[math]\displaystyle{ =(a+c)+(bi+di) }[/math]
[math]\displaystyle{ =(a+c)+(b+d)i }[/math]
[math]\displaystyle{ =e+fi }[/math]

[math]\displaystyle{ (a+bi)(c+di)=(a+c)+(b+d)i }[/math]

[math]\displaystyle{ =a(c+di)+bi(c+di) }[/math]
[math]\displaystyle{ =ac+adi+bic+bidi }[/math]
[math]\displaystyle{ =ac+bdi^2 + adi+bci }[/math]
[math]\displaystyle{ =(ac-bd)+(ad+bc)i }[/math]
[math]\displaystyle{ =e+fi }[/math]
[math]\displaystyle{ 0_C=0+0i }[/math]
[math]\displaystyle{ 1_C=1+0i }[/math]
[math]\displaystyle{ (a+bi)+(c+di)=0+0i }[/math]
[math]\displaystyle{ -(a+bi)=(-a)+(-b)i }[/math]
[math]\displaystyle{ a+bi \neq 0 \Rightarrow (a,b) \neq 0 }[/math]

• Find another element of [math]\displaystyle{ \mathbb C }[/math], [math]\displaystyle{ x+yi }[/math] such that [math]\displaystyle{ (a+bi)(x+yi)=(1+0i) }[/math]

[math]\displaystyle{ (a+bi)(x+yi)=(ax-by)+(ay+bx)i=1+0i }[/math]
[math]\displaystyle{ ax-by=1 }[/math] (1)
[math]\displaystyle{ bx+ay=0 }[/math] (2)
[math]\displaystyle{ a,b }[/math] are given
[math]\displaystyle{ x,y }[/math] unknowns

[math]\displaystyle{ b \times (1) }[/math] [math]\displaystyle{ abx-b^2y=b }[/math]

[math]\displaystyle{ a \times (2) }[/math] [math]\displaystyle{ abx+a^2y=0 }[/math]

[math]\displaystyle{ \Rightarrow a^{2}y+b^{2}y=-b }[/math]
[math]\displaystyle{ y=\frac{-b}{a^{2}+b^{2}} }[/math]
[math]\displaystyle{ x=\frac{a}{a^{2}+b^{2}} }[/math]

• (Note: We can divide since we assumed that [math]\displaystyle{ (a,b) \neq 0 }[/math]

[math]\displaystyle{ (a+bi)^{-1}=\frac{a}{a^{2}+b^{2}}+\frac{-b}{a^{2}+b^{2}}i=\frac{a-bi}{a^{2}+b^{2}}=\frac{\overline{a+bi}}{|a+bi|^{2}}=\frac{\mbox{conjugate}}{\mbox{norm squared }} }[/math]

Def: Let [math]\displaystyle{ \mathbb C }[/math] be the set of all pairs of real numbers [math]\displaystyle{ {(a,b)}={a+bi} }[/math]

with [math]\displaystyle{ +: (a,b)+(c,d)=(a+c,b+d) }[/math]

[math]\displaystyle{ (a+bi)+(c+di)=(a+c)+(b+d)i }[/math]

[math]\displaystyle{ \times :(a+bi)(c+di)= }[/math]...you know what

• 0 = you know what

• 1 = you know what

Theorem:

  1. [math]\displaystyle{ \mathbb C }[/math] is a field
  1. [math]\displaystyle{ (0+1i)^2=(0,1)^2=i^2=-1_{C}=(-1,0) }[/math]
  1. [math]\displaystyle{ \mathbb R \rightarrow \mathbb C }[/math] by [math]\displaystyle{ a \rightarrow a+0i }[/math]

Proof: [math]\displaystyle{ F_{1},F_{2},F_{3},... }[/math]

Example: [math]\displaystyle{ F_{5} }[/math] (distributivity)

• Show that [math]\displaystyle{ z(u+v)=zu+zv }[/math]

Let [math]\displaystyle{ z=(a+bi) }[/math]

[math]\displaystyle{ u=(c+di) }[/math]
[math]\displaystyle{ v=(e+fi) }[/math]

When [math]\displaystyle{ a,b,c,d,e,f \in \mathbb R }[/math]

[math]\displaystyle{ (a+bi)[(c+di)+(e+fi)]=(a+bi)(c+di)+(a+bi)(e+fi)=(ac-bd)+\ldots }[/math]

• NEXT WEEK: Complex numbers have geometric meaning, geometric interpretation (waves)