06-1350/Class Notes for Tuesday November 7: Difference between revisions
No edit summary |
|||
| Line 33: | Line 33: | ||
While these are not necessary for the statement of the theorem, it is worthwhile to note that the invariants of the unknot, the unknotted <math>\theta</math>-graph and the unknotted dumbbell are as follows: |
While these are not necessary for the statement of the theorem, it is worthwhile to note that the invariants of the unknot, the unknotted <math>\theta</math>-graph and the unknotted dumbbell are as follows: |
||
[[Image:UnknotThetaDumbbell.png|thumb|center|640px|Some noteworthy invariants |
[[Image:UnknotThetaDumbbell.png|thumb|center|640px|Some noteworthy invariants]] |
||
===References=== |
===References=== |
||
Revision as of 11:33, 23 January 2007
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Fundamental Theorem of Finite Type Invariants
Almost Theorem. There exists a universal TG-morphism Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z=(Z_\Gamma):KTG\to{\mathcal A}} from the TG-algebra of knotted trivalent graphs to the TG-algebra of Jacobi diagrams. Furthermore, any two such TG-morphisms are twist equivalent.
Theorem. (Essentially due to Murakami and Ohtsuki, [MO]) There exists an R-normal TG-morphism from the TG-algebra of knotted trivalent graphs to the -twisted TG-algebra of Jacobi diagrams. Furthermore, any two such TG-morphisms are twist equivalent.
The above theorem is simply the accurate formulation of the almost theorem above it. The "almost theorem" is just what you would have expected, with an additional uniqueness statement. The "theorem" just adds to it a few normalizations that actually make it right. The determination of these normalizations is quite a feat; even defining them takes a page or two. I'm not entirely sure why the Gods of mathematics couldn't have just allowed the "almost theorem" to be true and make our lives a bit simpler.
Enough whining; we just need to define "R-normal" and .
Definition. is called R-normal if Failed to parse (unknown function "\MobiusSymbol"): {\displaystyle Z(\bigcirc)^{-1}Z(\MobiusSymbol)=\exp(\isolatedchord/4)} in , where Failed to parse (unknown function "\MobiusSymbol"): {\displaystyle (\MobiusSymbol)} denotes the positively-twisted Möbius band and where Failed to parse (unknown function "\isolatedchord"): {\displaystyle (\isolatedchord)} denotes the unique degree 1 chord diagram in .
Definition. is almost the same as . It has the same spaces (i.e., for any , ), but the unzip operations on get "renormalized":
- The edge-unzip operations.
- Let denote the specific element of defined in the following subsection. If denotes the unzip operation of an edge for the TG-algebra and is the corresponding operation in , the two operations are related by . Here "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu^{1/2}_e} " means "inject a copy of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu^{1/2}} on the edge Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Gamma} , and likewise, "Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu^{-1/2}_{e'}\nu^{-1/2}_{e''}} " means "inject copies of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu^{-1/2}} on the edges Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e'} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e''} of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_e\Gamma} that are created by the unzip of ".
The Mysterious Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu}
It remains to define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \nu\in{\mathcal A}(\uparrow)} . Well, it is the element often called "the invariant of the unknot", for indeed, by a long chain of reasoning, it is the invariant of the unknot. It is also given by the following explicit formula of [BGRT] and [BLT]:
In the above formula \chi denotes the PBW "symmetrization" map, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exp_\cup} means "exponentiation in the disjoint union sense", Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_{2n}} is the "wheel with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2n} legs" (so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_2=\twowheel,} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \omega_4=\fourwheel,} etc.) and the 's are the "modified Bernoulli numbers" defined by the power series expansion
(so Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_2=1/48} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_4=-1/5760} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_6=1/362880} , etc.).
Some values of the invariant
While these are not necessary for the statement of the theorem, it is worthwhile to note that the invariants of the unknot, the unknotted Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \theta} -graph and the unknotted dumbbell are as follows:
References
[BGRT] ^ D. Bar-Natan, S. Garoufalidis, L. Rozansky and D. P. Thurston, Wheels, wheeling, and the Kontsevich integral of the unknot, Israel Journal of Mathematics 119 (2000) 217-237, arXiv:q-alg/9703025.
[BLT] ^ D. Bar-Natan, T. Q. T. Le and D. P. Thurston, Two applications of elementary knot theory to Lie algebras and Vassiliev invariants, Geometry and Topology 7-1 (2003) 1-31, arXiv:math.QA/0204311.
[MO] ^ J. Murakami and T. Ohtsuki, Topological Quantum Field Theory for the Universal Quantum Invariant, Communications in Mathematical Physics 188 (1997) 501-520.