06-1350/Class Notes for Tuesday November 14: Difference between revisions
From Drorbn
Jump to navigationJump to search
No edit summary |
No edit summary |
||
| Line 9: | Line 9: | ||
* Sweeping clean a tree and <math>{\mathcal A}(\Gamma)\equiv{\mathcal A}(\uparrow_{b_1(\Gamma)})</math>. |
* Sweeping clean a tree and <math>{\mathcal A}(\Gamma)\equiv{\mathcal A}(\uparrow_{b_1(\Gamma)})</math>. |
||
[[Image:06-1350-TRPhiB.png|center|500px]] |
[[Image:06-1350-TRPhiB.png|center|500px]] |
||
* <math>{\mathcal A}(\uparrow_n)</math> is a VS-algebra (see more at [[VS, TS and TG Algebras]]). |
|||
* In the coordinates above, write the <math>TR\Phi B</math> relations in various algebraic notations. |
* In the coordinates above, write the <math>TR\Phi B</math> relations in various algebraic notations. |
||
** R4: <math>(1230)^\star B^\pm\cdot(1213)^\star B^\pm\cdot(1023)^\star\Phi=(1123)^\star\Phi\cdot(1233)^\star B^\pm</math>. |
|||
** R4 |
|||
** <math>B^{\pm}</math> in terms of <math>\Phi</math> and <math>R</math> and <math>R</math> in terms of <math>T</math>. |
** <math>B^{\pm}</math> in terms of <math>\Phi</math> and <math>R</math> and <math>R</math> in terms of <math>T</math>. |
||
** R3, R2, R1 |
** R3, R2, R1 |
||
Revision as of 08:53, 14 November 2006
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||
In Preparation
The information below is preliminary and cannot be trusted! (v)
Today's Agenda
- Recall planar algebras and the planar algebra of shielded chord diagrams.
- Finish describing the necessary relations between [math]\displaystyle{ T }[/math], [math]\displaystyle{ R }[/math], [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ B^{\pm} }[/math] in verbal form.
- Sweeping clean a tree and [math]\displaystyle{ {\mathcal A}(\Gamma)\equiv{\mathcal A}(\uparrow_{b_1(\Gamma)}) }[/math].
- [math]\displaystyle{ {\mathcal A}(\uparrow_n) }[/math] is a VS-algebra (see more at VS, TS and TG Algebras).
- In the coordinates above, write the [math]\displaystyle{ TR\Phi B }[/math] relations in various algebraic notations.
- R4: [math]\displaystyle{ (1230)^\star B^\pm\cdot(1213)^\star B^\pm\cdot(1023)^\star\Phi=(1123)^\star\Phi\cdot(1233)^\star B^\pm }[/math].
- [math]\displaystyle{ B^{\pm} }[/math] in terms of [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ R }[/math] and [math]\displaystyle{ R }[/math] in terms of [math]\displaystyle{ T }[/math].
- R3, R2, R1
- Symmetry of [math]\displaystyle{ \Phi }[/math] and of [math]\displaystyle{ B^{\pm} }[/math].
- [math]\displaystyle{ u }[/math], [math]\displaystyle{ d }[/math] and [math]\displaystyle{ \# }[/math]
- Idempotence for [math]\displaystyle{ T }[/math], [math]\displaystyle{ R }[/math], [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ B^{\pm} }[/math].