06-1350/Class Notes for Tuesday November 14: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
No edit summary
Line 10: Line 10:
[[Image:06-1350-TRPhiB.png|center|500px]]
[[Image:06-1350-TRPhiB.png|center|500px]]
* In the coordinates above, write the <math>TR\Phi B</math> relations in various algebraic notations.
* In the coordinates above, write the <math>TR\Phi B</math> relations in various algebraic notations.
** R4
** <math>B^{\pm}</math> in terms of <math>\Phi</math> and <math>R</math> and <math>R</math> in terms of <math>T</math>.
** R3, R2, R1
** Symmetry of <math>\Phi</math> and of <math>B^{\pm}</math>.
** <math>u</math>, <math>d</math> and <math>\#</math>
** Idempotence for <math>T</math>, <math>R</math>, <math>\Phi</math> and <math>B^{\pm}</math>.

Revision as of 21:07, 13 November 2006

In Preparation

The information below is preliminary and cannot be trusted! (v)

Today's Agenda

  • Recall planar algebras and the planar algebra of shielded chord diagrams.
  • Finish describing the necessary relations between [math]\displaystyle{ T }[/math], [math]\displaystyle{ R }[/math], [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ B^{\pm} }[/math] in verbal form.
  • Sweeping clean a tree and [math]\displaystyle{ {\mathcal A}(\Gamma)\equiv{\mathcal A}(\uparrow_{b_1(\Gamma)}) }[/math].
06-1350-TRPhiB.png
  • In the coordinates above, write the [math]\displaystyle{ TR\Phi B }[/math] relations in various algebraic notations.
    • R4
    • [math]\displaystyle{ B^{\pm} }[/math] in terms of [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ R }[/math] and [math]\displaystyle{ R }[/math] in terms of [math]\displaystyle{ T }[/math].
    • R3, R2, R1
    • Symmetry of [math]\displaystyle{ \Phi }[/math] and of [math]\displaystyle{ B^{\pm} }[/math].
    • [math]\displaystyle{ u }[/math], [math]\displaystyle{ d }[/math] and [math]\displaystyle{ \# }[/math]
    • Idempotence for [math]\displaystyle{ T }[/math], [math]\displaystyle{ R }[/math], [math]\displaystyle{ \Phi }[/math] and [math]\displaystyle{ B^{\pm} }[/math].