06-240/Classnotes For Thursday, September 21: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
Line 20: Line 20:


<math>\mbox{(convention: }x,y,z\mbox{ }\mbox{ are vectors; }a,b,c\mbox{ }\mbox{ are scalars)}</math>
<math>\mbox{(convention: }x,y,z\mbox{ }\mbox{ are vectors; }a,b,c\mbox{ }\mbox{ are scalars)}</math>
#<math> x+y=y+x \ </math>
#<math> x y=y x \ </math>
#<math> x+(y+z)=(x+y)+z \ </math>
#<math> x (y z)=(x y) z \ </math>
#<math> x+0=x \ </math>
#<math> x 0=x \ </math>
#<math> \forall x\; \exists\ y \ \mbox{ s.t. }x+y=0</math>
#<math> \forall x\; \exists\ y \ \mbox{ s.t. }x y=0</math>
#<math> 1\cdot x=x \ </math>
#<math> 1\cdot x=x \ </math>
#<math> a(bx)=(ab)x \ </math>
#<math> a(bx)=(ab)x \ </math>
#<math> a(x+y)=ax+ay \ </math>
#<math> a(x y)=ax ay \ </math>
#<math> (a+b)x=ax+bx \ </math>
#<math> (a b)x=ax bx \ </math>


=====Definition=====
=====Definition=====
Line 33: Line 33:
Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations
Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations


: <math> +: V \times V \to V </math>
: <math> : V \times V \to V </math>
: <math> \cdot: F \times V \to V \mbox{, so that:}</math>
: <math> \cdot: F \times V \to V \mbox{, so that:}</math>
#<math> \forall x,y \in V\ x+y=y+x </math>
#<math> \forall x,y \in V\ x y=y x </math>
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math>
#<math> \forall x,y \in V\ x (y z)=(x y) z </math>
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x+0=x </math>
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x 0=x </math>
#<math> \forall x \in V\; \exists\ y \in V\ s.t. \ x+y=0</math>
#<math> \forall x \in V\; \exists\ y \in V\ s.t. \ x y=0</math>
#<math> 1\cdot x=x\ </math>
#<math> 1\cdot x=x\ </math>
#<math> a(bx)=(ab)x\ </math>
#<math> a(bx)=(ab)x\ </math>
#<math> a(x+y)=ax+ay\ </math>
#<math> a(x y)=ax ay\ </math>
#<math> \forall x \in V\ ,\forall a,b \in F\ (a+b)x=ax+bx </math>
#<math> \forall x \in V\ ,\forall a,b \in F\ (a b)x=ax bx </math>
-----
-----
9. <math> x \mapsto \vert x\vert \in \mathbb{R} \ \vert x+y\vert \le \vert x\vert+\vert y\vert </math>
9. <math> x \mapsto \vert x\vert \in \mathbb{R} \ \vert x y\vert \le \vert x\vert \vert y\vert </math>
====''Examples''====
====''Examples''====
'''Ex.1.'''
'''Ex.1.'''
Line 50: Line 50:
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> x=(a_1,\ldots,a_2)\ y=(b_1,\ldots, b_2)\ </math> <br/>
<math> x=(a_1,\ldots,a_2)\ y=(b_1,\ldots, b_2)\ </math> <br/>
<math> x+y:=(a_1+b_1,a_2+b_2,\ldots,a_n+b_n)\ </math> <br/>
<math> x y:=(a_1 b_1,a_2 b_2,\ldots,a_n b_n)\ </math> <br/>
<math> 0_{F^n}=(0,\ldots,0) </math> <br/>
<math> 0_{F^n}=(0,\ldots,0) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/>
<math> \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/>
<math> \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right) \left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
'''Ex.2.'''
'''Ex.2.'''
<math> V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots &
<math> V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11}</math>
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
<math>\mbox{Addition by adding entry by entry:}</math>

<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/>

<math>\mbox{Multiplication by multiplying scalar c to all entries by M.}</math>

<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/>

<math>\mbox{Zero matrix has all entries = 0:}</math>

<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots &
& \vdots \\ 0 & \cdots & 0\end{pmatrix} </math> <br/>
'''Ex.3.'''
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/>
'''Ex.4.'''
<math>\mbox{F is a vector space over itself.}</math> <br/>
'''Ex.5.'''
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/>
'''Ex.6.'''
<math>\mbox{Let S be a set. Let}</math> <br/>
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/>
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/>
<math> (f+g)(t)=f(t)+g(t)\ for\ any\ t\in S </math> <br/>
<math> (af)(t)=a\cdot f(t)\ </math>

Revision as of 02:40, 28 May 2007

Scan of Lecture Notes

Scan of Tutorial notes

Force Vectors

A force has a direction and a magnitude.

Properties

Definition

Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations


9.

Examples

Ex.1.







Ex.2. Failed to parse (unknown function "\begin{pmatrix}"): {\displaystyle V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11}}