06-240/Classnotes For Thursday, September 21: Difference between revisions

From Drorbn
Jump to navigationJump to search
No edit summary
 
 
(14 intermediate revisions by 7 users not shown)
Line 1: Line 1:
{{06-240/Navigation}}
A force has a direction & a magnitude.


==Scan of Lecture Notes==
==<center><u>'''Force Vectors'''</u></center>==
#There is a special force vector called 0.
#They can be added.
#They can be multiplied by any scalar.


* PDF file by [[User:Alla]]: [[Media:MAT_Lect004.pdf|Week 2 Lecture 2 notes]]
====''Properties''==== (convention: x,y,z-vectors; a,b,c-scalars)
* PDF file by [[User:Gokmen]]: [[Media:06-240-Lecture-21-september.pdf|Week 2 Lecture 2 notes]]
# <math> x+y=y+x \ </math>

==Scan of Tutorial notes==

* PDF file by [[User:Alla]]: [[Media:MAT_Tut002.pdf|Week 2 Tutorial notes]]
* PDF file by [[User:Gokmen]]: [[Media:06-240-tutorial-21-september.pdf|Week 2 Tutorial notes]]

==Force Vectors==
A force has a direction and a magnitude.
# There is a special force vector called 0.
# They can be added.
# They can be multiplied by any scalar.

====''Properties''====

(convention: <math>x,y,z</math> are vectors; <math>a,b,c</math> are scalars)
#<math> x+y=y+x </math>
#<math> x+(y+z)=(x+y)+z \ </math>
#<math> x+(y+z)=(x+y)+z \ </math>
#<math> x+0=x \ </math>
#<math> x+0=x \ </math>
#<math> \forall x\; \exists\ y \ s.t.\ x+y=0 \ </math>
#<math> \forall x\; \exists\ y \ \mbox{ s.t. }x+y=0</math>
#<math> 1.x=x \ </math>
#<math> 1\cdot x=x \ </math>
#<math> a(bx=(ab)x \ </math>
#<math> a(bx)=(ab)x \ </math>
#<math> a(x+y)=ax+ay \ </math>
#<math> a(x+y)=ax+ay \ </math>
#<math> (a+b)x=ax+bx \ </math>
#<math> (a+b)x=ax+bx \ </math>


=====Definition=====
=====Definition===== Let F be a field "of scalars". A vector space over F is a set V (of "vectors") along with two operations:

Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations

: <math> +: V \times V \to V </math>
: <math> +: V \times V \to V </math>
: <math> \cdot: F \times V \to V </math>, so that
: <math> \cdot: F \times V \to V \mbox{, so that:}</math>
#<math> \forall x,y \in V\ x+y=y+x </math>
#<math> \forall x,y \in V\ x+y=y+x </math>
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math>
#<math> \forall x,y \in V\ x+(y+z)=(x+y)+z </math>
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x+0=x </math>
#<math> \exists\ 0 \in V s.t.\; \forall x \in V\ x+0=x </math>
#<math> \forall x \in V\; \exists\ y \in V\ s.t.\ x+y=0</math>
#<math> \forall x \in V\; \exists\ y \in V\ s.t. \ x+y=0</math>
#<math> 1.x=x\ </math>
#<math> 1\cdot x=x\ </math>
#<math> a(bx)=(ab)x\ </math>
#<math> a(bx)=(ab)x\ </math>
#<math> a(x+y)=ax+ay\ </math>
#<math> a(x+y)=ax+ay\ </math>
#<math> \forall x \in V\ ,\forall a,b \in F\ (a+b)x=ax+bx </math>
#<math> \forall x \in V\ ,\forall a,b \in F\ (a+b)x=ax+bx </math>
-----
-----
9. <math> x \mapsto |x| \in \mathbb{R} \ \ |x+y| \le |x|+|y| </math>
9. <math> x \mapsto \vert x\vert \in \mathbb{R} \ \vert x+y\vert \le \vert x\vert+\vert y\vert </math>
====''Examples''====
====''Examples''====
'''Ex.1.'''
'''Ex.1.'''
<math> F^n= \big\{ (a_1,a_2,a_3,...,a_{n-1},a_n):\forall i\ a_i \in F \big\} </math> <br/>
<math> F^n= \lbrace(a_1,a_2,a_3,\ldots,a_{n-1},a_n):\forall i\ a_i \in F \rbrace </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> n \in \mathbb{Z}\ , n \ge 0 </math> <br/>
<math> x=(a_1,...,a_2)\ y=(b_1,...,b_2)\ </math> <br/>
<math> x=(a_1,\ldots,a_2)\ y=(b_1,\ldots, b_2)\ </math> <br/>
<math> x+y:=(a_1=b_1,a_2+b_2,...,a_n+b_n)\ </math> <br/>
<math> x+y:=(a_1+b_1,a_2+b_2,\ldots,a_n+b_n)\ </math> <br/>
<math> 0_{F^n}=(0,...,0) </math> <br/>
<math> 0_{F^n}=(0,\ldots,0) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,...,aa_n) </math> <br/>
<math> a\in F\ ax=(aa_1,aa_2,\ldots,aa_n) </math> <br/>
<math> In \ \mathbb{Q}^3 \ ( \frac{3}{2},-2,7)+( \frac{-3}{2}, \frac{1}{3},240)=(0, \frac{-5}{3},247) </math> <br/>
<math> \mbox{In } \mathbb{Q}^3 \ \left( \frac{3}{2},-2,7\right)+\left( \frac{-3}{2}, \frac{1}{3},240\right)=\left(0, \frac{-5}{3},247\right) </math> <br/>
<math> 7( \frac{1}{5},\frac{1}{7},\frac{1}{9})=( \frac{7}{5},1,\frac{7}{9}) </math> <br/>
<math> 7\left( \frac{1}{5},\frac{1}{7},\frac{1}{9}\right)=\left( \frac{7}{5},1,\frac{7}{9}\right) </math> <br/>
'''Ex.2.'''
'''Ex.2.'''
<math> V=M_{m \times n}(F)=\Bigg\{\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots &
<math> V=M_{m\times n}(F)=\left\lbrace\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots &
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \Bigg\} </math> <br/>
& \vdots \\ a_{m1} & \cdots & a_{mn}\end{pmatrix}: a_{ij} \in F \right\rbrace </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
<math> M_{3\times 2}( \mathbb{R})\ni \begin{pmatrix} 7 & -7 \\ \pi & \mathit{e} \\ -5 & 2 \end{pmatrix} </math> <br/>
<math>\mbox{Addition by adding entry by entry:}</math>
Add by adding entry by entry:<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/>

Multiplication by a is multiplication of all entries by a. <br/>
<math> M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}+\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}=\begin{pmatrix} {a_{11}+b_{11}} & {a_{12}+b_{12}} \\ {a_{21}+b_{21}} & {a_{22}+b_{22}} \end{pmatrix}</math> <br/>

<math>\mbox{Multiplication by multiplying scalar c to all entries by M.}</math>

<math> c\cdot M_{2\times 2}\ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}=\begin{pmatrix} c\cdot a_{11} & c\cdot a_{12} \\ c\cdot a_{21} & c\cdot a_{22} \end{pmatrix}</math> <br/> <br/>

<math>\mbox{Zero matrix has all entries = 0:}</math>

<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots &
<math> 0_{M_{m\times n}}=\begin{pmatrix} 0 & \cdots & 0 \\ \vdots &
& \vdots \\ 0 & \cdots & 0\end{pmatrix} </math> <br/>
& \vdots \\ 0 & \cdots & 0\end{pmatrix} </math> <br/>
Line 50: Line 74:
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/>
<math> \mathbb{C}</math> form a vector space over <math> \mathbb{R}</math>. <br/>
'''Ex.4.'''
'''Ex.4.'''
F is a vector space over itself. <br/>
<math>\mbox{F is a vector space over itself.}</math> <br/>
'''Ex.5.'''
'''Ex.5.'''
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/>
<math> \mathbb{R}</math> is a vector space over <math> \mathbb{Q}</math>. <br/>
'''Ex.6.'''
'''Ex.6.'''
Let S be a set. Let <br/>
<math>\mbox{Let S be a set. Let}</math> <br/>
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/>
<math> \mathcal{F}(S,\mathbb{R})=\big\{f:S\to \mathbb{R} \big\} </math> <br/>
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/>
<math> f,g \in \mathcal{F}(S,\mathbb{R}) </math> <br/>
<math> (f+g)(t)=f(t)+g(t)\ for\ any\ t\in S </math> <br/>
<math> (f+g)(t)=f(t)+g(t)\ for\ any\ t\in S </math> <br/>
<math> (af)(t)=a.f(t)\ </math>
<math> (af)(t)=a\cdot f(t)\ </math>

Latest revision as of 07:42, 11 July 2007

Scan of Lecture Notes

Scan of Tutorial notes

Force Vectors

A force has a direction and a magnitude.

  1. There is a special force vector called 0.
  2. They can be added.
  3. They can be multiplied by any scalar.

Properties

(convention: are vectors; are scalars)

Definition

Let F be a field "of scalars". A vector space over F is a set V, of "vectors", along with two operations


9.

Examples

Ex.1.







Ex.2.





Ex.3. form a vector space over .
Ex.4.
Ex.5. is a vector space over .
Ex.6.