| Date(s)
|
Link(s)
|
| 2010/02/22
|
???
|
| 2010/01/20
|
Formal integration
|
| 2010/01/13
|
Combing wB
|
| 2010/01/06
|
Exponentiation in tder
|
| 2009/09/22
|
descending v-knots
|
| 2009/08/26
|
red over green v-tangles
|
| 2009/08/19
|
Polyak Algebra
|
| 2009/07/08
|
Immanants
|
| 2009/07/01
|
Alexander modules
|
| 2009/06/24
|
Alexander modules
|
| 2009/06/10
|
Alexander, PBW for A^w, class videos
|
| 2009/06/03
|
Low key
|
| 2009/05/06
|
Low key
|
| 2009/04/29
|
Winter on Ribbons
|
| 2009/04/22
|
Misc
|
| 2009/04/15
|
KV
|
| 2009/03/25
|
KV
|
| 2009/03/18
|
Peter Lee
|
| 2009/03/04
|
Kirby calculus
|
| 2009/02/25
|
Karene on Reidemeister-Schreier
|
| 2009/02/11
|
Dror on Trotter, Jana on Alexander
|
| 2009/02/04
|
Bracelets
|
| 2009/01/28
|
gl(N) chickens
|
| 2009/01/15
|
2D Gauss Diagrams, FiC
|
| 2009/01/08
|
S&G update and more
|
| 2008/12/11
|
Chu on Garside, II
|
| 2008/12/04
|
wZ is 1-1
|
| 2008/11/27
|
The Wen
|
| 2008/11/20
|
The Zoom Space
|
| 2008/11/13
|
Chu on Garside
|
| 2008/11/06
|
Z and GPV
|
| 2008/10/30
|
Peter Lee on EHKR
|
| 2008/10/23
|
Map of the Field
|
| 2008/09/25
|
Hirasawa on Open Books
|
| 2008/09/18
|
Odd Khovanov
|
| 2008/09/17
|
Categorification.m
|
| 2008/09/11
|
More wAlex
|
| 2008/09/03
|
?
|
| 2008/08/27
|
Dexp and BCH
|
| 2008/08/06
|
Z, A, det, tr, log
|
| 2008/07/30
|
Alexander Relations Marathon
|
| 2008/07/02
|
Peter Lee on horizontal Aw
|
| 2008/06/25
|
w-Alexander
|
| 2008/06 16-22
|
Thomas Fiedler Marathon
|
| 2008/06/11
|
?
|
| 2008/06/04
|
Dylan Thurston
|
| 2008/05/28
|
Welded Tangles
|
| 2008/05/21
|
Bruce, Lucy
|
| 2008/04/23
|
Welded Knots
|
| 2008/04/16
|
Quandles and Lie algebras
|
| 2008/04/09
|
No-div Alekseev-Torossian
|
| 2008/04/02
|
Knotted Kung Fu Pandas
|
| 2008/03/26
|
Homotopy invariants
|
| 2008/03/19
|
Infinitesimal Artin
|
| 2008/03/12
|
Infinitesimalization of Artin
|
| 2008/03/05
|
Krzysztof Putyra on Odd Khovanov Homology
|
| 2008/02/27
|
Karene Chu on Proof of Artin
|
| 2008/02/20
|
Organizational, Hecke algebras
|
| 2008/02/13
|
Exponential and Magnus expansions
|
| 2008/02/06
|
cancelled
|
| 2008/01/30
|
Artin's theorem
|
| 2008/01/16
|
Hutchings' work, 2
|
| 2008/01/09
|
Hutchings' work, 1
|
| 2007/12/12
|
Bone soup
|
| 2007/12/05
|
Expansions
|
| 2007/11/28
|
Quantum groups
|
| 2007/11/21
|
Surfaces and gl(N)/so(N)
|
| 2007/11/07
|
Expansions for Groups
|
| 2007/10/31
|
Louis Leung on bialgebra weight systems
|
| 2007/10/24
|
Zsuzsi Dancso, continued
|
| 2007/10/17
|
Jana Archibald on the multivariable Alexander
|
| 2007/10/10
|
Zsuzsi Dancso on diagrammatic su(2)
|
| 2007/10/03
|
Hernando Burgos on alternating tangles
|
| 2007/09/26
|
Peter Lee on homology
|
| 2007/09/06
|
Garoufalidis' visit
|
| 2007/08/30
|
Art and enumeration
|
| 2007/08/23
|
My Hanoi talk?
|
| 2007/08/16
|
Lie bialgebra weight systems and more
|
| 2007/07/19
|
Subdiagram formulas
|
| 2007/07/12
|
Playing with Brunnians
|
| 2007/07/05
|
Virtualization
|
| 2007/06/28
|
Virtual braids
|
| 2007/06/07
|
Virtual knots
|
| 2007/05/31
|
Social gathering
|
| 2007/05/24
|
Lee on Frozen Feet
|
|
First meeting for summer 2007! Peter Lee is telling us about associators with frozen feet. See also his handout from the CMS Winter 2006 Session on Knot Homologies - front:
, back:
and Dror's very partial paperlet, Associators with Frozen Feet.
- Definition of [math]\displaystyle{ {\mathcal A}^n }[/math] and its relation with finite type invariants.
- The frozen feet quotient.
- The action of [math]\displaystyle{ \Delta }[/math], [math]\displaystyle{ \eta_i }[/math], and of [math]\displaystyle{ \star\mapsto\star^{23} }[/math], etc. (Dror: see also VS, TS and TG Algebras.)
- Generators and relations: [math]\displaystyle{ R^\pm }[/math], [math]\displaystyle{ \Phi^\pm }[/math], the hexagons and pentagon, unitarity, non-degeneracy, group-like property.
- [math]\displaystyle{ [abw]=[baw] }[/math] if [math]\displaystyle{ |w|\geq 2 }[/math] and similar identities.
- [math]\displaystyle{ \phi(a,b,c)=\phi(a,b) }[/math], [math]\displaystyle{ \Phi=\exp\phi }[/math] and in our case, this is just [math]\displaystyle{ 1+\phi }[/math]!
- [math]\displaystyle{ [a^nb^mab]=(-1)^{n+m}[ab]a^nb^m }[/math].
- [math]\displaystyle{ \phi=[ab]\lambda(a,b) }[/math]. With this, we have as follows:
- Unitarity becomes [math]\displaystyle{ \lambda(a,b)=\lambda(b,a) }[/math].
- [math]\displaystyle{ \Phi^{312}=1+[ca]\lambda(ac) }[/math] where [math]\displaystyle{ c=-a-b }[/math].
- Likewise for all other terms in the hexagon, which becomes
[math]\displaystyle{ e^{b+c}=(1+[ab]\lambda(a,b))e^b\cdots = e^be^c+[ab]\left(\lambda(a,b)e^{b+c}+\lambda(b,c)e^c+\lambda(a,c)\right) }[/math]
- Simplifying [math]\displaystyle{ e^{b+c}-e^be^c }[/math] using frozen feet, this becomes
[math]\displaystyle{ [cb]\left(\frac{e^{b+c}-1-b-c}{b(b+c)}-\frac{e^c-1-c}{c}\right) = [ab]\left(\lambda(a,b)e^{b+c}+\lambda(b,c)e^c+\lambda(a,c)\right) }[/math]
[math]\displaystyle{ [ab]\left(\ldots\right) = [ab]\left(\lambda(a,b)e^{b+c}+\lambda(b,c)e^c+\lambda(a,c)\right) }[/math]