10-327/Homework Assignment 4
|
Reading
Read sections 23 through 25 in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read. Also, preread sections 26 through 27, just to get a feel for the future.
Doing
Solve and submit problems 1-3 and 8-10 Munkres' book, pages 157-158.
Due date
This assignment is due at the end of class on Monday, October 25, 2010.
Suggestions for Good Deeds
Annotate our Monday videos (starting with Video: Topology-100927) in a manner similar to (say) AKT-090910-1, and/or add links to the blackboard shots, in a manner similar to Alekseev-1006-1. Also, make constructive suggestions to me, Dror and / or the videographer, Qian (Sindy) Li, on how to improve the videos and / or the software used to display them. Note that "constructive" means also, "something that can be implemented relatively easily in the real world, given limited resources".
Dror's notes above / Student's notes below |
Questions
1)Hi, quick question. I am wondering if the term test will cover the material on this assignment, or only the material before the assignment. Thanks! Jason.
2) In EXAMPLE 7 on page 151 Munkres claims that Rn~ is ['clearly' :)] homeomorphic to Rn: where Rn~ consists of all sequences x=(x1,x2,x3,...) with xi=0 for i>n, and Rn consists of all sequences x=(x1,x2,...xn). Why are they homeomorphic ?? Thank you kindly. Oliviu.
RE: 2) Let be defined as and let be defined as where if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \le i \le n } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_i(x)=0 } otherwise. Then both and are continuous, because we are working in the product topology and the component functions, namely the projection function and constant function are continuous. Also is a bijection because and , i.e has a left and right inverse. So is a homeomorphism between the two spaces. Quick question is there a nicer way of writing math than using the math tag? Ian 16:03, 22 October 2010 (EDT)
3)Question. Suppose we have a function f going from topological space X to Y which is not onto and a function g going from Y to Z. Could I still define the composition of f and g? i.e. g circle f? -Kai Xwbdsb 19:19, 22 October 2010 (EDT)
- If I understand your question, I don't see why not...think about Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}}
for example. is not onto, then let then g compose f is - John
- I agree but look at munkre's page 17 last sentence. Note that g compose with f is defined only when the range of f equals the domain of g. So I just want to confirm with Dror if there is something wrong here.
- Touche, I see your point...that is strange - John
- I agree but look at munkre's page 17 last sentence. Note that g compose with f is defined only when the range of f equals the domain of g. So I just want to confirm with Dror if there is something wrong here.
4)Another question. We know how to show T.S. are homeomorphic. Just find a homeomorphism. But how do we show (0,1) and (0,1] are not homeomorhpic? I d assume they all have induced topology from Rstd. -Kai
5)Question about the proof for [0,1] being connected. A few details are omitted. why would a closed subset of [0,1] contain its supremum? Also why [0,g_0] being a subset of A follows automatically after we showed that g_0 is in A? -Kai