Additions to the MAT 327 web site no longer count towards good deed points

#

Week of...

Notes and Links

1

Sep 13

About This Class, Monday  Continuity and open sets, Thursday  topologies, continuity, bases.

2

Sep 20

Monday  More on bases, Thursdsay  Products, Subspaces, Closed sets, HW1, HW1 Solutions

3

Sep 27

Monday  the Cantor set, closures, Thursday, Class Photo, HW2, HW2 Solutions

4

Oct 4

Monday  the axiom of choice and infinite product spaces, Thursday  the box and the product topologies, metric spaces, HW3, HW3 Solutions

5

Oct 11

Monday is Thanksgiving. Thursday  metric spaces, sequencial closures, various products. Final exam's date announced on Friday.

6

Oct 18

Monday  connectedness in ${\mathbb {R} }$, HW4, HW4 Solutions, Thursday  connectedness, pathconnectedness and products

7

Oct 25

Monday  Compactness of $[0,1]$, Term Test on Thursday, TT Solutions

8

Nov 1

Monday  compact is closed and bounded, maximal values, HW5, HW5 Solutions, Wednesday was the last date to drop this course, Thursday  compactness of products and in metric spaces, the FIP

9

Nov 8

MondayTuesday is Fall Break, Thursday  Tychonoff and a taste of StoneCech, HW6, HW6 Solutions

10

Nov 15

Monday  generalized limits, Thursday  Normal spaces and Urysohn's lemma, HW7, HW7 Solutions

11

Nov 22

Monday  $T_{3.5}$ and $I^{A}$, Thursday  Tietze's theorem

12

Nov 29

Monday  compactness in metric spaces, HW8, HW8 Solutions, Thursday  completeness and compactness

13

Dec 6

Monday  Baire spaces and nowhere differentiable functions, Wednesday  Hilbert's 13th problem; also see December 2010 Schedule

R

Dec 13

See December 2010 Schedule

F

Dec 20

Final exam, Monday December 20, 2PM5PM, at BR200

Register of Good Deeds

Add your name / see who's in!

See Hilbert's 13th


Reading
Read sections 26 and 27 in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read. Also, preread sections 28 and 29, just to get a feel for the future.
Doing
Solve the following problems from Munkres' book, though submit only the underlined ones: Problems 1, 4, 5, 6, 7, 8, 9, 12 on pages 170172, and problem 2 on page 177. (For the last, recall that $d(x,A):={\mbox{inf}}_{a\in A}d(x,a)$).
Due date
This assignment is due at the end of class on Thursday, November 11, 2010.

Dror's notes above / Student's notes below


 Question. In 4. By bounded metric space you mean there exists a point and an epsilon where this epsilon nbd contains everything in the metric space? Kai
 Indeed so, though usually when talking about boundedness, people use the letter $M$ and not the letter $\epsilon$. It makes no difference, of course.