14-240/Classnotes for Monday September 15

From Drorbn
Revision as of 10:05, 21 September 2014 by Penlong (talk | contribs)
Jump to navigationJump to search

Definition of Subtraction and Division

  • Subtraction: if .
  • Division: if .

Basic Properties of a Field (cont'd)

8. , .

Proof of 8
By F3 ,
By F5 , ;
By F3 , ;
By Thm P1, .

9. s.t. ;

s.t. .
Proof of 9
By F3 , .

10. .

11. .

12. or .

Proof of 12
<= :
By P8 , if , then ;
By P8 , if , then .
=> : Assume , if a = 0 we are done;
Otherwise , by P8 , and we have ;
by cancellation (P2) , .

.

Proof
By F5 , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a + b) \times (a - b) = a \times (a + (-b)) + b \times (a + (-b))}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = a^2 - b^2}

Theorem

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \exists! \iota : \Z \rightarrow F} s.t.

1. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota(0) = 0 , \iota(1) = 1} ;
2. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall m ,n \in \Z, \iota(m+n) = \iota(m) + \iota(n)} ;
3. Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \forall m ,n \in \Z, \iota(m\times n) = \iota(m) \times \iota(n)} .
Examples

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota(2) = \iota(1+1) = \iota(1) + \iota(1) = 1 + 1;} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \iota(3) = \iota(2+1) = \iota(2) + \iota(1) = \iota(2) + 1;}

......

In F2: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} 27 ----> \iota(27) &= \iota(26 + 1)\\ &= \iota(26) + \iota(1)\\ &= \iota(26) + 1\\ &= \iota(13 \times 2) + 1\\ &= \iota(2) \times \iota(13) + 1\\ &= (1 + 1) \times \iota(13) + 1\\ &= 0 \times \iota(13) + 1\\ &= 1 \end{align} } http://drorbn.net/images/c/cd/MAT_240_lecture_3_%281_of_2%29.pdf (Lecture 3 notes by AM part 1 of 2) http://drorbn.net/images/6/6a/MAT240_lectuire_3_%282_of_2%29.pdf (Lecture 3 notes by AM part 2 of 2)