|
|
Line 18: |
Line 18: |
|
|
|
|
|
==Bone Soup== |
|
==Bone Soup== |
|
Let <math>n</math> be a natural number and let <math>R={\mathbb Z}[x_1,\ldots,x_n]</math> be the ring of polynomials in <math>n</math> variables <math>x_1,\ldots,x_n</math>. Let <math>B_n</math> be the <math>R</math>-module generated by symbols <math>B_{ij;kl}</math> (the "bones") where <math>1\leq i,j,k,l\leq n</math>, subject to the relations: |
|
Let <math>n</math> be a natural number and let <math>R={\mathbb Z}[x_1,\ldots,x_n]</math> be the ring of polynomials in <math>n</math> variables <math>x_1,\ldots,x_n</math>. The <math>n</math>'th bone soup module <math>B_n</math> is the <math>R</math>-module generated by symbols <math>B_{ij;kl}</math> (the "bones") where <math>1\leq i,j,k,l\leq n</math>, subject to the relations: |
|
* <math>B_{ij;kl}=B_{kl;ij}=-B_{ji;kl}=-B_{ij;lk}</math>. |
|
* <math>B_{ij;kl}=B_{kl;ij}=-B_{ji;kl}=-B_{ij;lk}</math>. |
|
* <math>x_mB_{ij;kl}-x_jB_{im;kl}+x_iB_{jm;kl}=0</math>. |
|
* <math>x_mB_{ij;kl}-x_jB_{im;kl}+x_iB_{jm;kl}=0</math>. |
Latest revision as of 13:28, 12 December 2007
Date(s)
|
Link(s)
|
2010/02/22
|
???
|
2010/01/20
|
Formal integration
|
2010/01/13
|
Combing wB
|
2010/01/06
|
Exponentiation in tder
|
2009/09/22
|
descending v-knots
|
2009/08/26
|
red over green v-tangles
|
2009/08/19
|
Polyak Algebra
|
2009/07/08
|
Immanants
|
2009/07/01
|
Alexander modules
|
2009/06/24
|
Alexander modules
|
2009/06/10
|
Alexander, PBW for A^w, class videos
|
2009/06/03
|
Low key
|
2009/05/06
|
Low key
|
2009/04/29
|
Winter on Ribbons
|
2009/04/22
|
Misc
|
2009/04/15
|
KV
|
2009/03/25
|
KV
|
2009/03/18
|
Peter Lee
|
2009/03/04
|
Kirby calculus
|
2009/02/25
|
Karene on Reidemeister-Schreier
|
2009/02/11
|
Dror on Trotter, Jana on Alexander
|
2009/02/04
|
Bracelets
|
2009/01/28
|
gl(N) chickens
|
2009/01/15
|
2D Gauss Diagrams, FiC
|
2009/01/08
|
S&G update and more
|
2008/12/11
|
Chu on Garside, II
|
2008/12/04
|
wZ is 1-1
|
2008/11/27
|
The Wen
|
2008/11/20
|
The Zoom Space
|
2008/11/13
|
Chu on Garside
|
2008/11/06
|
Z and GPV
|
2008/10/30
|
Peter Lee on EHKR
|
2008/10/23
|
Map of the Field
|
2008/09/25
|
Hirasawa on Open Books
|
2008/09/18
|
Odd Khovanov
|
2008/09/17
|
Categorification.m
|
2008/09/11
|
More wAlex
|
2008/09/03
|
?
|
2008/08/27
|
Dexp and BCH
|
2008/08/06
|
Z, A, det, tr, log
|
2008/07/30
|
Alexander Relations Marathon
|
2008/07/02
|
Peter Lee on horizontal Aw
|
2008/06/25
|
w-Alexander
|
2008/06 16-22
|
Thomas Fiedler Marathon
|
2008/06/11
|
?
|
2008/06/04
|
Dylan Thurston
|
2008/05/28
|
Welded Tangles
|
2008/05/21
|
Bruce, Lucy
|
2008/04/23
|
Welded Knots
|
2008/04/16
|
Quandles and Lie algebras
|
2008/04/09
|
No-div Alekseev-Torossian
|
2008/04/02
|
Knotted Kung Fu Pandas
|
2008/03/26
|
Homotopy invariants
|
2008/03/19
|
Infinitesimal Artin
|
2008/03/12
|
Infinitesimalization of Artin
|
2008/03/05
|
Krzysztof Putyra on Odd Khovanov Homology
|
2008/02/27
|
Karene Chu on Proof of Artin
|
2008/02/20
|
Organizational, Hecke algebras
|
2008/02/13
|
Exponential and Magnus expansions
|
2008/02/06
|
cancelled
|
2008/01/30
|
Artin's theorem
|
2008/01/16
|
Hutchings' work, 2
|
2008/01/09
|
Hutchings' work, 1
|
2007/12/12
|
Bone soup
|
2007/12/05
|
Expansions
|
2007/11/28
|
Quantum groups
|
2007/11/21
|
Surfaces and gl(N)/so(N)
|
2007/11/07
|
Expansions for Groups
|
2007/10/31
|
Louis Leung on bialgebra weight systems
|
2007/10/24
|
Zsuzsi Dancso, continued
|
2007/10/17
|
Jana Archibald on the multivariable Alexander
|
2007/10/10
|
Zsuzsi Dancso on diagrammatic su(2)
|
2007/10/03
|
Hernando Burgos on alternating tangles
|
2007/09/26
|
Peter Lee on homology
|
2007/09/06
|
Garoufalidis' visit
|
2007/08/30
|
Art and enumeration
|
2007/08/23
|
My Hanoi talk?
|
2007/08/16
|
Lie bialgebra weight systems and more
|
2007/07/19
|
Subdiagram formulas
|
2007/07/12
|
Playing with Brunnians
|
2007/07/05
|
Virtualization
|
2007/06/28
|
Virtual braids
|
2007/06/07
|
Virtual knots
|
2007/05/31
|
Social gathering
|
2007/05/24
|
Lee on Frozen Feet
|
|
Invitation
Dear Knot at Lunch People,
We will have our next fall lunch on Wednesday December 12, at the usual place, Bahen 6180, at 12 noon.
As always, please bring brown-bag lunch and fresh ideas. This is break time, and I expect relatively low attendance. So whatever we will do, it will be light and easy.
Further information about this meeting will/may appear at https://drorbn.net/drorbn/index.php?title=Knot_at_Lunch_on_December_12_2007.
As always, if you know anyone I should add to this mailing list or if you wish to be removed from this mailing list please let me know. To prevent junk accumulation in mailboxes, I will actively remove inactive people unless they request otherwise.
Best,
Dror.
Bone Soup
Let be a natural number and let be the ring of polynomials in variables . The 'th bone soup module is the -module generated by symbols (the "bones") where , subject to the relations:
- .
- .
Question 1. Can you find a simple basis for ?
Question 2. Is related to curvature tensors and Bianchi identities?