12-240/Classnotes for Tuesday September 25: Difference between revisions
From Drorbn
Jump to navigationJump to search
Line 21: | Line 21: | ||
VS3 <math>\forall\!\,</math> x <math>\in\!\,</math> V: 0 ( of V) +x = x |
VS3 <math>\forall\!\,</math> x <math>\in\!\,</math> V: 0 ( of V) +x = x |
||
VS4 <math>\forall\!\,</math> x <math>\in\!\,</math> V, <math>\exist\!\</math> V <math>\in\!\,</math> V: v + x= 0 ( of V) |
|||
VS4 |
|||
VS5 |
VS5 |
||
VS6 |
VS6 |
Revision as of 18:37, 25 September 2012
|
Today's class dealt with the properties of vector spaces.
Definition
Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV->V, (.): FxV->V
VxV={(v,w): v,w V}
FxV={(c,v): c F, v V}
Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv
Such that
VS1 x, y V: x+y = y+x
VS2 x, y, z V: x+(y+z) = (x+y)+z
VS3 x V: 0 ( of V) +x = x
VS4 x V, Failed to parse (syntax error): {\displaystyle \exist\!\} V V: v + x= 0 ( of V)
VS5 VS6