© | Dror Bar-Natan: Academic Pensieve: Random

Blackboard Shots

Recent prefixes: 25-1301 Martchenkov Hogan 24-327 KAL SantosK Afeke Kuno VanDerVeen Boninger LiuJ LopezNeumann Lauda Bosch PoleDancing Dancso

All prefixes: 08401 09240 10_327 11_1100 12_240 12_267 14_1100 15-344 15-475 16-1750 16-475 1617-257 17-1750 18-327 18S-AKT 2122-257 24-327 25-1301 AKT09 AKT14 AKT17 Aarhus Abbasi Accra2010 Afeke Alekseev Alexakis Alhawaj Andersen Antolin Archibald BCHKW Bazett Beliakova Bellingeri Bettencourt Bigelow Blazejewski Boden Boninger Bosch Boyle Brin Brochier BrownF Bryden Burgos Caen Carrasco Carter Cattaneo Cheng Chterental Chu Cimasoni Conant Costantino Costello Dalvit Dancso Dema Deng Dolgushev Dror Enriquez Ens Etingof Faifman Fiedler Filmus Freedman Fresse Frohlich Frohman Furusho Gadanidis Gallagher Gaudreau Getzler Godin Gualtieri Gupta Halacheva Henriques Hillman Hirasawa Hoell Hogan Humbert Hurd Itai Izmaylov Jiang JohnsonFreyd KAL Kalka Kamnitzer Karshon Kashaev Katz Kauffman Kazhdan KhesinA Khovanov Kirk Koytcheff Kricker Kuno Kuperberg Lai Lambrechts Lauda LazyKnots Le LeD Ledvinka LeeP Leung LiBland LicataT LiuJ LopezNeumann Martchenkov Martel Martins Masbaum Massuyeau Matviichuk McKay McLellan Medabalimi Meusburger Mirny Miyazawa MorganS Morrison Morton-Ferguson Moskovich Mracek Munasinghe MurakamiJ Murphy Naef Nandakumar Nikolaev Ohtsuki Olah Orr Overbay Papakonstantinou Peng Penneys PoleDancing PolyPoly-1605 Polyak Putyra Ramakrishna Rasmussen Raynor Reed Remenik Reshetikhin RobertsonM Roukema Rushworth Samuelson SantosK Sazdanovic Schaveling Scherich Schneps Sela Selmani Severa Smirnov Spreer Stein Sternberg SummerHomology2017 Suzuki TangYC Thimotheus ThurstonD ToledanoLaredo Tsimerman VanDerVeen Vaughan Vergne VideoClub Vo WangH Willwacher Winter Yampolsky Yetter ZeilbergerN Zhang Zibrowius Zung deSilva wClips

Date-Time / Prefix Comment What? A collection of Blackboard Shots (7887, right now, with 201 prefixes), mostly taken in my office using a ceiling-mounted web camera.

Why? Mostly for my own use and for the use of the other people with whom I share blackboard space. And it is public because the easiest way to make something viewable to a number of people is to make it viewable to the whole world.

Oh no! If you found your handwriting here and you don't like it, please let me know and the relevant shot(s) will be removed, no questions asked.

How? A ceiling-mounted Logitech QuickCam Pro 9000 web camera is permanently pointed at my blackboard and connected via USB to this web server. The script bbs.php initiates a capture (using luvcview; hit "s" to shoot and "q" to quit), prompts for a file name prefix and a comment, and runs make. The makefile runs MakeDatabase.php (if necessary) to update the ShotDatabase.php. The latter file is used by index.php, which is this page, and also by show.php, used to display individual shots. The makefile also updates bbs.zip, which contains all the above mentioned scripts as well as common.php, showprefix.php, loadnew.php, random.php, the JavaScript actions.js, and the icon bbs.jpg. Finally, $\TeX$-like rendering uses MathJax (automatic on all pages but this one).

Exceptions. Some shots are taken by other means and are added manually or using loadnew.php.

250121-162901 / 25-1301 Mon 250120 H7: Borsuk-Ulam (6).
250121-162900 / 25-1301 Mon 250120 H7: Borsuk-Ulam (5).
250121-162859 / 25-1301 Mon 250120 H7: Borsuk-Ulam (4).
250121-162858 / 25-1301 Mon 250120 H7: Borsuk-Ulam (3).
250121-162857 / 25-1301 Mon 250120 H7: Borsuk-Ulam (2).
250121-162856 / 25-1301 Mon 250120 H7: Borsuk-Ulam.
250120-163512 / Martchenkov Relating Seifert and Dehn? (5)
250115-112346 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (10).
250115-112345 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (9).
250115-112344 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (8).
250115-112343 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (7).
250115-112342 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (6).
250115-112341 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (5).
250115-112340 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (4).
250115-112339 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (3).
250115-112338 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem (2).
250115-112337 / 25-1301 Tue 250114 H5-6: Categories and functors, the Brouwer fixed point theorem.
250114-075239 / 25-1301 Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (7).
250114-075238 / 25-1301 Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (6).
250114-075237 / 25-1301 Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (5).
250114-075236 / 25-1301 Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (4).
250114-075235 / 25-1301 Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (3).
250114-075234 / 25-1301 Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra (2).
250114-075233 / 25-1301 Mon 250113 H4: $\pi_1(S^1,1)\simeq{\mathbb Z}$, the fundamental theorem of algebra.
250109-112338 / Hogan The Goldman bracket in w terms (2).
250107-162817 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (14).
250107-162816 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (13).
250107-162815 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (12).
250107-162814 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (11).
250107-162813 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (10).
250107-162812 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (9).
250107-162811 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (8).
Date-Time / Prefix Comment
250107-162810 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (7).
250107-162809 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (6).
250107-162808 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (5).
250107-162807 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (4).
250107-162806 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (3).
250107-162805 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$ (2).
250107-162804 / 25-1301 Tue 250107 H2-3: $\pi_1(S^1,1)\simeq{\mathbb Z}$.
250106-142329 / 25-1301 Mon 250106 H1: The definition of $\pi_1$ (7).
250106-142328 / 25-1301 Mon 250106 H1: The definition of $\pi_1$ (6).
250106-142327 / 25-1301 Mon 250106 H1: The definition of $\pi_1$ (5).
250106-142326 / 25-1301 Mon 250106 H1: The definition of $\pi_1$ (4).
250106-142325 / 25-1301 Mon 250106 H1: The definition of $\pi_1$ (3).
250106-142324 / 25-1301 Mon 250106 H1: The definition of $\pi_1$ (2).
250106-142323 / 25-1301 Mon 250106 H1: The definition of $\pi_1$.
241216-192424 / Martchenkov Relating Seifert and Dehn? (4)
241212-115827 / Hogan The Goldman bracket in w terms.
241209-130507 / Martchenkov Relating Seifert and Dehn? (3)
241201-152703 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (12).
241201-152655 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (11).
241201-152647 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (10).
241201-152636 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (9).
241201-152630 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (8).
241201-152624 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (7).
241201-152617 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (6).
241201-152611 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (5).
241201-152603 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (4).
241201-152557 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (3).
241201-152550 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim (2).
241201-152535 / 24-327 Thu Nov 28 H35-36: Retracts, Brouwer, and Lim.
241128-063422 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (10).
241128-063421 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (9).
241128-063420 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (8).
Date-Time / Prefix Comment
241128-063419 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (7).
241128-063418 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (6).
241128-063417 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (5).
241128-063416 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (4).
241128-063415 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (3).
241128-063414 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts (2).
241128-063413 / 24-327 Tue Nov 26 H34: $\pi_1$ is a functor, retracts.
241125-133229 / Martchenkov Relating Seifert and Dehn? (2)
241121-175656 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (18).
241121-175655 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (17).
241121-175654 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (16).
241121-175653 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (15).
241121-175652 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (14).
241121-175651 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (13).
241121-175650 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (12).
241121-175649 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (11).
241121-175648 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (10).
241121-175647 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (9).
241121-175646 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (8).
241121-175645 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (7).
241121-175644 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (6).
241121-175643 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (5).
241121-175642 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (4).
241121-175641 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (3).
241121-175640 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories (2).
241121-175639 / 24-327 Thu Nov 21 H32-33: $\pi_1(S^1)$, categories.
241120-142816 / Hogan R4^wgh trivially holds.
241120-062923 / 24-327 Tue Nov 19 H31: Lifting properties (9).
241120-062922 / 24-327 Tue Nov 19 H31: Lifting properties (8).
241120-062921 / 24-327 Tue Nov 19 H31: Lifting properties (7).
241120-062920 / 24-327 Tue Nov 19 H31: Lifting properties (6).
241120-062919 / 24-327 Tue Nov 19 H31: Lifting properties (5).
Date-Time / Prefix Comment
241120-062918 / 24-327 Tue Nov 19 H31: Lifting properties (4).
241120-062917 / 24-327 Tue Nov 19 H31: Lifting properties (3).
241120-062916 / 24-327 Tue Nov 19 H31: Lifting properties (2).
241120-062915 / 24-327 Tue Nov 19 H31: Lifting properties.
241115-170402 / Martchenkov Relating Seifert and Dehn?
241114-162740 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (15).
241114-162739 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (14).
241114-162738 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (13).
241114-162737 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (12).
241114-162736 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (11).
241114-162735 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (10).
241114-162734 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (9).
241114-162733 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (8).
241114-162732 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (7).
241114-162731 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (6).
241114-162730 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (5).
241114-162729 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (4).
241114-162728 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (3).
241114-162727 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces (2).
241114-162726 / 24-327 Thu Nov 14 H19-30: $\pi_1$, covering spaces.
241112-165040 / 24-327 Tue Nov 12 H28: More on path homotopies (9).
241112-165039 / 24-327 Tue Nov 12 H28: More on path homotopies (8).
241112-165038 / 24-327 Tue Nov 12 H28: More on path homotopies (7).
241112-165037 / 24-327 Tue Nov 12 H28: More on path homotopies (6).
241112-165036 / 24-327 Tue Nov 12 H28: More on path homotopies (5).
241112-165035 / 24-327 Tue Nov 12 H28: More on path homotopies (4).
241112-165034 / 24-327 Tue Nov 12 H28: More on path homotopies (3).
241112-165033 / 24-327 Tue Nov 12 H28: More on path homotopies (2).
241112-165032 / 24-327 Tue Nov 12 H28: More on path homotopies.
241107-162414 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (17)
241107-162413 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (16)
241107-162412 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (15)
Date-Time / Prefix Comment
241107-162411 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (14)
241107-162410 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (13)
241107-162409 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (12)
241107-162408 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (11)
241107-162407 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (10)
241107-162406 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (9)
241107-162405 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (8)
241107-162404 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (7)
241107-162403 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (6)
241107-162402 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (5)
241107-162401 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (4)
241107-162400 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (3)
241107-162359 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies (2)
241107-162358 / 24-327 Thu Nov 7 H26-27: A bit on groups and a bit on homotopies
241105-161906 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (10).
241105-161905 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (9).
241105-161904 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (8).
241105-161903 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (7).
241105-161902 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (6).
241105-161901 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (5).
241105-161900 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (4).
241105-161859 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (3).
241105-161858 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets (2).
241105-161857 / 24-327 Tue Nov 5 H25: Uniform continuity and the Lebesgue number lemma, regrets.
241101-134930 / KAL Daniel Martchenkov on Alexander modules (3).
241101-134929 / KAL Daniel Martchenkov on Alexander modules (2).
241101-134928 / KAL Daniel Martchenkov on Alexander modules.
241025-171129 / Martchenkov Burau and Alexander.
241025-134800 / KAL Traffic matrices and equivariant linking numbers.
241024-171201 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (20).
241024-171200 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (19).
241024-171159 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (18).
Date-Time / Prefix Comment
241024-171158 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (17).
241024-171157 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (16).
241024-171156 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (15).
241024-171155 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (14).
241024-171154 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (13).
241024-171153 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (12).
241024-171152 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (11).
241024-171151 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (10).
241024-171150 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (9).
241024-171149 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (8).
241024-171148 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (7).
241024-171147 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (6).
241024-171146 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (5).
241024-171145 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (4).
241024-171144 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (3).
241024-171143 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$ (2).
241024-171142 / 24-327 Thu Oct 24 H23-24: Compactness in ${\mathbb R}^n$.
241022-165825 / 24-327 Oct 22 H22: Compactness basics (12).
241022-165824 / 24-327 Oct 22 H22: Compactness basics (11).
241022-165823 / 24-327 Oct 22 H22: Compactness basics (10).
241022-165822 / 24-327 Oct 22 H22: Compactness basics (9).
241022-165821 / 24-327 Oct 22 H22: Compactness basics (8).
241022-165820 / 24-327 Oct 22 H22: Compactness basics (7).
241022-165819 / 24-327 Oct 22 H22: Compactness basics (6).
241022-165818 / 24-327 Oct 22 H22: Compactness basics (5).
241022-165817 / 24-327 Oct 22 H22: Compactness basics (4).
241022-165816 / 24-327 Oct 22 H22: Compactness basics (3).
241022-165815 / 24-327 Oct 22 H22: Compactness basics (2).
241022-165814 / 24-327 Oct 22 H22: Compactness basics.
241019-080032 / 24-327 Connectedness and products (19).
241019-080031 / 24-327 Connectedness and products (18).
241019-080030 / 24-327 Connectedness and products (17).
Date-Time / Prefix Comment
241019-080029 / 24-327 Connectedness and products (16).
241019-080028 / 24-327 Connectedness and products (15).
241019-080027 / 24-327 Connectedness and products (14).
241019-080026 / 24-327 Connectedness and products (13).
241019-080025 / 24-327 Connectedness and products (12).
241019-080024 / 24-327 Connectedness and products (11).
241019-080023 / 24-327 Connectedness and products (10).
241019-080022 / 24-327 Connectedness and products (9).
241019-080021 / 24-327 Connectedness and products (8).
241019-080020 / 24-327 Connectedness and products (7).
241019-080019 / 24-327 Connectedness and products (6).
241019-080018 / 24-327 Connectedness and products (5).
241019-080017 / 24-327 Connectedness and products (4).
241019-080016 / 24-327 Connectedness and products (3).
241019-080015 / 24-327 Connectedness and products (2).
241019-080014 / 24-327 Connectedness and products.
241016-150259 / Hogan A conjecture for ${\mathcal A}^{wgh}$ (2).
241016-123142 / SantosK $T$ and $z$.
241015-212829 / 24-327 Tue Oct 15 H19: Connected spaces (10).
241015-212828 / 24-327 Tue Oct 15 H19: Connected spaces (9).
241015-212827 / 24-327 Tue Oct 15 H19: Connected spaces (8).
241015-212826 / 24-327 Tue Oct 15 H19: Connected spaces (7).
241015-212825 / 24-327 Tue Oct 15 H19: Connected spaces (6).
241015-212824 / 24-327 Tue Oct 15 H19: Connected spaces (5).
241015-212823 / 24-327 Tue Oct 15 H19: Connected spaces (4).
241015-212822 / 24-327 Tue Oct 15 H19: Connected spaces (3).
241015-212821 / 24-327 Tue Oct 15 H19: Connected spaces (2).
241015-212820 / 24-327 Tue Oct 15 H19: Connected spaces.
241011-141247 / Martchenkov The Seifert presentation (3).
241011-141246 / Martchenkov The Seifert presentation (2).
241011-141211 / KAL Dreams on integration and Seifert surfaces.
241010-173958 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (17).
Date-Time / Prefix Comment
241010-173957 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (16).
241010-173956 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (15).
241010-173955 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (14).
241010-173954 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (13).
241010-173953 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (12).
241010-173952 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (11).
241010-173951 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (10).
241010-173950 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (9).
241010-173949 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (8).
241010-173948 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (7).
241010-173947 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (6).
241010-173946 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (5).
241010-173945 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (4).
241010-173944 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (3).
241010-173943 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces (2).
241010-173942 / 24-327 Thu Oct 10 H17-18: Quotient spaces, connected spaces.
241009-145702 / Hogan A conjecture for ${\mathcal A}^{wgh}$.
241009-062543 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (9).
241009-062542 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (8).
241009-062541 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (7).
241009-062540 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (6).
241009-062539 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (5).
241009-062538 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (4).
241009-062537 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (3).
241009-062536 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces (2).
241009-062535 / 24-327 Tue Oct 8 H16: Metrizabilifty and products, quotient spaces.
241003-185843 / 24-327 Thu Oct 3 H14-15: Metrizability, sequential closure, and products (19).
241003-185842 / 24-327 Thu Oct 3 H14-15: Metrizability, sequential closure, and products (18).
241003-185841 / 24-327 Thu Oct 3 H14-15: Metrizability, sequential closure, and products (17).
241003-185840 / 24-327 Thu Oct 3 H14-15: Metrizability, sequential closure, and products (16).
241003-185839 / 24-327 Thu Oct 3 H14-15: Metrizability, sequential closure, and products (15).
241003-185838 / 24-327 Thu Oct 3 H14-15: Metrizability, sequential closure, and products (14).

See All Shots.