Additions to the MAT 327 web site no longer count towards good deed points

#

Week of...

Notes and Links

1

Sep 13

About This Class, Monday  Continuity and open sets, Thursday  topologies, continuity, bases.

2

Sep 20

Monday  More on bases, Thursdsay  Products, Subspaces, Closed sets, HW1, HW1 Solutions

3

Sep 27

Monday  the Cantor set, closures, Thursday, Class Photo, HW2, HW2 Solutions

4

Oct 4

Monday  the axiom of choice and infinite product spaces, Thursday  the box and the product topologies, metric spaces, HW3, HW3 Solutions

5

Oct 11

Monday is Thanksgiving. Thursday  metric spaces, sequencial closures, various products. Final exam's date announced on Friday.

6

Oct 18

Monday  connectedness in ${\mathbb {R} }$, HW4, HW4 Solutions, Thursday  connectedness, pathconnectedness and products

7

Oct 25

Monday  Compactness of $[0,1]$, Term Test on Thursday, TT Solutions

8

Nov 1

Monday  compact is closed and bounded, maximal values, HW5, HW5 Solutions, Wednesday was the last date to drop this course, Thursday  compactness of products and in metric spaces, the FIP

9

Nov 8

MondayTuesday is Fall Break, Thursday  Tychonoff and a taste of StoneCech, HW6, HW6 Solutions

10

Nov 15

Monday  generalized limits, Thursday  Normal spaces and Urysohn's lemma, HW7, HW7 Solutions

11

Nov 22

Monday  $T_{3.5}$ and $I^{A}$, Thursday  Tietze's theorem

12

Nov 29

Monday  compactness in metric spaces, HW8, HW8 Solutions, Thursday  completeness and compactness

13

Dec 6

Monday  Baire spaces and nowhere differentiable functions, Wednesday  Hilbert's 13th problem; also see December 2010 Schedule

R

Dec 13

See December 2010 Schedule

F

Dec 20

Final exam, Monday December 20, 2PM5PM, at BR200

Register of Good Deeds

Add your name / see who's in!

See Hilbert's 13th


See some blackboard shots at BBS/10_327100923143358.jpg.

Dror's notes above / Student's notes below


Here are some lecture notes..
Lecture 4 page 1
Lecture 4 page 2
Lecture 4 page 3
Lecture 4 page 4
Lecture 4 page 5
Lecture 4 page 6
 Supplementary Notes to Lecture 4(By Kai)
For lecture 4. Some more illustration on Uniqueness of the product topology satisfying condition 1&2. Complete proof of the subspace topology is the unique topology satisfying condition 1&2. Proof for a couple of claims: The product topology on R_std and R_std is the standard topology on R^2 and subspace topology on Z as a subspace of Y which is a subspace of Z is the same as the subspace topology on Z as a subspace of X, where Y is a subspace of X.
page 1
page 2
page 3
page 4
page 5
page 6
page 7