10-327/Homework Assignment 3
|
Reading
Read sections 19, 20, 21, and 23 in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read. Also, preread sections 24 and 26, just to get a feel for the future.
Doing
Solve the following problems from Munkres' book, though submit only the underlined ones: Problems 6, 7 on page 118, and problems 3, 4, 5, 6, 8, 9, 10 on pages 126-128.
Class Photo
Identify yourself in the 10-327/Class Photo page!
Due date
This assignment is due at the end of class on Thursday, October 14, 2010.
Suggestions for Good Deeds
Annotate our Monday videos (starting with Video: Topology-100927) in a manner similar to (say) AKT-090910-1, and/or add links to the blackboard shots, in a manner similar to Alekseev-1006-1. Also, make constructive suggestions to me, Dror and / or the videographer, Qian (Sindy) Li, on how to improve the videos and / or the software used to display them. Note that "constructive" means also, "something that can be implemented relatively easily in the real worlds, given limited resources".
Dror's notes above / Student's notes below |
- Question about HW3 8(b)
I still don't understand why the uniform topology on R infinity is strictly finer than the product topology. if you find any open nbd in uniform topology of any point in R infinity there are only finitely many component are in the form of (x-epsilon,x+epsilon) because the sequence has infinitely many 0's. Can't I just choose these (x-epsilon,x+epsilon) multiply by infinitely many copies of R in the product topology? -Kai