12-240/Classnotes for Tuesday September 25

From Drorbn
Jump to navigationJump to search

Today's class dealt with the properties of vector spaces.


Definition

Let F is a field, a vector space V over F is a set V of vectors with special element O ( of V) and tow operations: (+): VxV->V, (.): FxV->V

VxV={(v,w): v,w [math]\displaystyle{ \in\!\, }[/math] V}

FxV={(c,v): c [math]\displaystyle{ \in\!\, }[/math] F, v [math]\displaystyle{ \in\!\, }[/math] V}

Then, (+): VxV->V is (v,w)= v+w; (.): FxV->V is (c,v)=cv

Such that

VS1 [math]\displaystyle{ \forall\!\, }[/math] x, y [math]\displaystyle{ \in\!\, }[/math] V: x+y = y+x

VS2 [math]\displaystyle{ \forall\!\, }[/math] x, y, z [math]\displaystyle{ \in\!\, }[/math] V: x+(y+z) = (x+y)+z

VS3 [math]\displaystyle{ \forall\!\, }[/math] x [math]\displaystyle{ \in\!\, }[/math] V: 0 ( of V) +x = x

VS4 [math]\displaystyle{ \forall\!\, }[/math] x [math]\displaystyle{ \in\!\, }[/math] V, [math]\displaystyle{ \exists \!\, }[/math] V [math]\displaystyle{ \in\!\, }[/math] V: v + x= 0 ( of V)

VS5 [math]\displaystyle{ \forall\!\, }[/math] x [math]\displaystyle{ \in\!\, }[/math] V, 1 (of F) .x = x

VS6 [math]\displaystyle{ \forall\!\, }[/math] a, b [math]\displaystyle{ \in\!\, }[/math] F, [math]\displaystyle{ \forall\!\, }[/math] x [math]\displaystyle{ \in\!\, }[/math] V: (ab)x = a(bx)

VS7 [math]\displaystyle{ \forall\!\, }[/math] a [math]\displaystyle{ \in\!\, }[/math] F, [math]\displaystyle{ \forall\!\, }[/math] x, y [math]\displaystyle{ \in\!\, }[/math] V; a(x + y)= ax + ay

Scanned Notes by Richardm