10-327/Classnotes for Monday December 6

From Drorbn
Revision as of 19:14, 20 December 2010 by Xwbdsb (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

See some blackboard shots at BBS/10_327-101206-142909.jpg.

Video: dbnvp Topology-101206

Dror's notes above / Student's notes below

Lecture Notes

  • Question. The fact that the metric space of real-valued functions on the unit interval with uniform metric is complete uses the fact that [0,1] is compact right? If the function space is defined on a non-compact topological space is that necessarily complete?... -Kai Xwbdsb 00:01, 20 December 2010 (EST)
    • No, the compactness of is not used. As we said in class, if is Cauchy in the uniform metric, then for any , the sequence is Cauchy in , so it has a limit. Call that limit ; it is not hard to show that is continuous and that . Theorem 43.6 in Munkres is a slight generalization of this. Drorbn 07:12, 20 December 2010 (EST)

Thanks Dror.

Everybody good luck on the exam!-Kai

Great course! Thank you very much for all your help Dror and all the classmates in this class. -Kai