Additions to the MAT 327 web site no longer count towards good deed points
|
#
|
Week of...
|
Notes and Links
|
1
|
Sep 13
|
About This Class, Monday - Continuity and open sets, Thursday - topologies, continuity, bases.
|
2
|
Sep 20
|
Monday - More on bases, Thursdsay - Products, Subspaces, Closed sets, HW1, HW1 Solutions
|
3
|
Sep 27
|
Monday - the Cantor set, closures, Thursday, Class Photo, HW2, HW2 Solutions
|
4
|
Oct 4
|
Monday - the axiom of choice and infinite product spaces, Thursday - the box and the product topologies, metric spaces, HW3, HW3 Solutions
|
5
|
Oct 11
|
Monday is Thanksgiving. Thursday - metric spaces, sequencial closures, various products. Final exam's date announced on Friday.
|
6
|
Oct 18
|
Monday - connectedness in , HW4, HW4 Solutions, Thursday - connectedness, path-connectedness and products
|
7
|
Oct 25
|
Monday - Compactness of , Term Test on Thursday, TT Solutions
|
8
|
Nov 1
|
Monday - compact is closed and bounded, maximal values, HW5, HW5 Solutions, Wednesday was the last date to drop this course, Thursday - compactness of products and in metric spaces, the FIP
|
9
|
Nov 8
|
Monday-Tuesday is Fall Break, Thursday - Tychonoff and a taste of Stone-Cech, HW6, HW6 Solutions
|
10
|
Nov 15
|
Monday - generalized limits, Thursday - Normal spaces and Urysohn's lemma, HW7, HW7 Solutions
|
11
|
Nov 22
|
Monday - and , Thursday - Tietze's theorem
|
12
|
Nov 29
|
Monday - compactness in metric spaces, HW8, HW8 Solutions, Thursday - completeness and compactness
|
13
|
Dec 6
|
Monday - Baire spaces and no-where differentiable functions, Wednesday - Hilbert's 13th problem; also see December 2010 Schedule
|
R
|
Dec 13
|
See December 2010 Schedule
|
F
|
Dec 20
|
Final exam, Monday December 20, 2PM-5PM, at BR200
|
Register of Good Deeds
|
Add your name / see who's in!
|
See Hilbert's 13th
|
|
In Preparation
The information below is preliminary and cannot be trusted! (v)
|
Dror's notes above / Student's notes below
|
|
- 10-327/Kai Yang 997712756
1.Register for the solution to the first and second assignment.
e.g. Here is what I will do:
Once we get our HW1 from the TA, I will correct all the mistakes(if any)
, scan the HW and put it here.
2.For lecture 3. Complete proof for the equality of three topologies generated by basis B. And solution to the four exercises.
3.For lecture 4. Some more illustration on Uniqueness of the product topology satisfying condition 1&2. Complete proof of the subspace topology is the unique topology satisfying condition 1&2. Proof for a couple of claims: The product topology on R_std and R_std is the standard topology on R^2 and subspace topology on Z as a subspace of Y which is a subspace of Z is the same as the subspace topology on Z as a subspace of X, where Y is a subspace of X.
4.Register for the solution to the 3rd and 4th assignment. Some extra problem (not to be handed in) for HW2.
5.Annotated a few lecture videos.
6.A few more solutions to questions about metric spaces with illustrations.
7.Solutions to HW5, Term test.