10-327/Homework Assignment 3

From Drorbn
Revision as of 17:13, 12 October 2010 by Drorbn (talk | contribs) (→‎Discussion)
Jump to navigationJump to search

Reading

Read sections 19, 20, 21, and 23 in Munkres' textbook (Topology, 2nd edition). Remember that reading math isn't like reading a novel! If you read a novel and miss a few details most likely you'll still understand the novel. But if you miss a few details in a math text, often you'll miss everything that follows. So reading math takes reading and rereading and rerereading and a lot of thought about what you've read. Also, preread sections 24 and 26, just to get a feel for the future.

Doing

Solve the following problems from Munkres' book, though submit only the underlined ones: Problems 6, 7 on page 118, and problems 3, 4, 5, 6, 8, 9, 10 on pages 126-128.

Class Photo

Identify yourself in the 10-327/Class Photo page!

Due date

This assignment is due at the end of class on Thursday, October 14, 2010.

Suggestions for Good Deeds

Annotate our Monday videos (starting with Video: dbnvp Topology-100927) in a manner similar to (say) dbnvp AKT-090910-1, and/or add links to the blackboard shots, in a manner similar to dbnvp Alekseev-1006-1. Also, make constructive suggestions to me, Dror and / or the videographer, Qian (Sindy) Li, on how to improve the videos and / or the software used to display them. Note that "constructive" means also, "something that can be implemented relatively easily in the real worlds, given limited resources".

Dror's notes above / Student's notes below

Discussion

  • Question about HW3 8(b). I still don't understand why the uniform topology on [math]\displaystyle{ {\mathbb R}^\infty }[/math] is strictly finer than the product topology. If you find any open nbd in uniform topology of any point in [math]\displaystyle{ {\mathbb R}^\infty }[/math] only finitely many component are in the form of [math]\displaystyle{ (x-\epsilon,x+\epsilon) }[/math] because the sequence has infinitely many [math]\displaystyle{ 0 }[/math]'s. Can't I just choose these [math]\displaystyle{ (x-\epsilon,x+\epsilon) }[/math] multiply by infinitely many copies of [math]\displaystyle{ {\mathbb R} }[/math] in the product topology? -Kai
    • Good thought, but there is something wrong in your logic. This though remains your assignment to do, so what I'll write may sound a bit cryptic: Note that in the uniform topology, the [math]\displaystyle{ (\pm\epsilon) }[/math] constraint applies also to the [math]\displaystyle{ 0 }[/math]'s. Drorbn 18:13, 12 October 2010 (EDT)