14-240/Tutorial-November4
|
Boris
Question 26 on Page 57 in Homework 5
Let and be a subspace of . Find .
First, let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) \in W}
. Then we can decompose since there is a such that . From here, there are several approaches:
Approach 1: Use Isomorphisms
We show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W}
is isomorphic to . Let Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B = \{1, x, x^2, ..., x^{n - 1}\}}
be the standard ordered basis of and be a subset of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle W}
. Then there is a unique linear transformation such that where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) \in B}
. Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T}
is both one-to-one and onto and conclude that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle dim(P_{n - 1}) = dim(W)}
.
Approach 2: Use the Rank-Nullity Theorem
Let be the standard ordered basis of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_n}
and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) \in P_{n}(R)}
. Then where and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g_i(x) \in K}
. Define Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T: P_{n}(R) \to R}
by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T(\displaystyle\sum_{i=1}^{n} c_ig_i(x))= \displaystyle\sum_{i=1}^{n} c_ig_i(a)}
. Then it is easy to show that is both well-defined and linear. Afterwards, show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle rank(T) = 1}
and use the rank-nullity theorem to conclude that .
Approach 3: Find a Basis with the Decomposed Polynomial
This approach is straightforward. Show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = \{x - a, (x - a)x, (x - a)x^2, ..., (x - a)x^{n - 1}\}}
is a basis of .
Approach 4: Find a Basis without the Decomposed Polynomial
This approach requires a little more cleverness when constructing the basis: .
Cite Carefully
Boris's Section Only
If you use in your proof Corollary 1 of the Fundamental Theorem of Algebra, then please cite it as "Corollary 1 of the Fundamental Theorem of Algebra". Do not cite it as the "Fundamental Theorem of Algebra" since that means you are citing the fundamental theorem instead of its corollary.