14-240/Tutorial-October28

From Drorbn
Jump to navigationJump to search

Boris

Try to Avoid the Einstellung Effect

By this point in the course, we become good at solving systems of linear equations. However, we should not use this same

old problem-solving strategy over and over if a more efficient one exists. Consider the following problems:


Q1: Determine if Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = \{(1, 4, -6), (1, 5, 8), (2, 1, 1), (0, 1, 0)\}} is linearly independent in .

We can solve this linear equation to find the answer:


where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_i \in R} .


Yet there is a less time-consuming approach that relies on two observations:

(1) The dimension of is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} so the size of a basis is also Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} .
(2) No linearly independent set can have more vectors than a generating set (by the Replacement Theorem).

Since a basis is a generating set and the size of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} , then the Replacement Theorem tells us that cannot be linearly

independent. Hence, the problem can be solved without solving any linear equations.


Q2: Determine if the polynomials generate .

Once again, we can solve a linear linear equation but we do not have to. Observe:

(1) The dimension is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} so the size of a basis is also .
(2) No generating set can have fewer vectors than a basis (by a Corollary to the Replacement Theorem).

Since there are only polynomials, then the Corollary tells us that it cannot generates . Once again, we used a more efficient way of solving a problem.

Don't be Too Lazy

Extending Linearly Independent Sets

Nikita