12-240/Classnotes for Tuesday October 16

From Drorbn
Revision as of 20:41, 12 December 2012 by Drorbn (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
Dror's notes above / Students' notes below

Theorems

1. If G generates, |G| [math]\displaystyle{ \ge \!\, }[/math] n and G contains a basis, |G|=n then G is a basis

2. If L is linearly independent, |L| [math]\displaystyle{ \le \!\, }[/math] n and L can be extended to be a basis. |L|=n => L is a basis.

3.W [math]\displaystyle{ \subset \!\, }[/math] V a subspace then W is finite dimensioned and dim W [math]\displaystyle{ \le \!\, }[/math] dim V

If dim W = dim V, then V = W If dim W < dim V, then any basis of W can be extended to be a basis of V

Proof of W is finite dimensioned:

Let L be a linearly independent subset of W which is of maximal size.

Fact about N

Every subset A of N, which is:

1. Non empty

2. Bounded : [math]\displaystyle{ \exist \!\, }[/math] N [math]\displaystyle{ \in \!\, }[/math] N, [math]\displaystyle{ \forall \!\, }[/math] a [math]\displaystyle{ \in \!\, }[/math] A, a [math]\displaystyle{ \le \!\, }[/math] N

has a maximal element: an element m [math]\displaystyle{ \in \!\, }[/math] A, [math]\displaystyle{ \forall\!\, }[/math] a [math]\displaystyle{ \in \!\, }[/math] A, a [math]\displaystyle{ \le \!\, }[/math] m ( m + 1 [math]\displaystyle{ \notin \!\, }[/math] A )

class note